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1 Introduction

Are foreign exchange interventions effective? This issue has been debated extensively in the 1980s

and 1990s, but no conclusive consensus has emerged. A key difficulty faced by researchers in an-

swering this question is the endogeneity problem: the exchange rate responds “within the period”

to central bank interventions and the central bank reacts “within the period” to fluctuations in the

exchange rate.1 As an example, consider the case of Japan. The monetary authorities of Japan,

which are known to be one of the most active interveners, started to disclose intervention data in

July 2001, and this has rekindled researchers’ interest in the effectiveness of interventions.2 However,

the information disclosed is limited: only the total amount of interventions on a day is released to

the public at the end of a quarter, and no detailed information, such as on the time of the interven-

tion(s), the number of interventions over the course of the day, and the market(s) (Tokyo, London,

or New York) in which the intervention(s) were executed, is disclosed.3 Most importantly, the low

frequency of the disclosed data poses a serious problem for researchers because it is well known that

the Japanese monetary authorities often react to intraday fluctuations in the exchange rate.4

In this paper, we propose a new methodology, which is based on Gibbs sampling, to eliminate

the endogeneity problem caused by the fact that data on foreign exchange market interventions is

available only on an aggregate daily basis. Consider a simple two-equation system. Hourly changes

in the exchange rate, △sh, satisfy △sh = αIh + disturbance, where Ih is the hourly amount of

yen-buying interventions. On the other hand, the central bank policy reaction function is given by

Ih = β△sh−1 + disturbance. Suppose that this two-equation system represents the true structure

of the economy, and that sh is observable at the hourly frequency but Ih is not: researchers are

able to observe only the daily sum of Ih, and in that sense, intervention data suffers from temporal

1Note that this difficulty would not arise if the central bank responded only slowly to fluctuations in the exchange
rate, or if the data sampling interval were sufficiently fine. In the context of fiscal policy, for example, the government
reacts to changes in variables like output and employment only slowly due to the political processes involved, so that
researchers can identify the impact of fiscal policy on these variables using available quarterly data. Blanchard and
Perotti (1999) used this property together with other detailed information on fiscal institutions in identifying their
structural VAR model.

2Recent studies reflecting this renewed interest includes Ito (2003), Fatum and Hutchison (2006), Dominguez
(2003), Chaboud and Humpage (2003), Galati et al (2005), Fratzscher (2005), and Fatum (2008), among others.

3This is true for monetary authorities in most industrial countries. For example, the Bundesbank and other
euro-zone central banks do not disclose intervention data to the public; neither does the European Central Bank.
The monetary authorities of the UK started to disclose information about their interventions in 2000, but the only
information disclosed is the daily amount of interventions. An important exception is the Swiss National Bank (SNB),
which discloses all transactions it carried out in the Swiss franc/US dollar market. Fischer and Zurlinden (1999) and
Payne and Vitale (2003) use the SNB transactions data to evaluate the efficacy of interventions.

4Chang and Taylor (1998), for example, counting the number of reports by Reuters about Japanese central bank
interventions from October 1, 1992 to September 30, 1993, find that there were reports of 154 intervention in 69 days,
implying that the Japanese central bank intervenes, on average, two or three times a day.
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aggregation. Given this environment, our task is to estimate α and β.

The key idea of methodology we propose is as follows. Suppose we have a guess about the values

of α and β. Then the exchange rate equation and the policy reaction function allow us to recover

the hourly amount of intervention, subject to the constraint that the sum of hourly amounts equals

the daily amount, which is observable. In an extreme case in which the variance of the disturbance

term in the first equation is very small, we estimate Ih as Ih = α−1△sh using the first equation. In

the other extreme case in which the variance of the disturbance term in the second equation is tiny,

then we have Ih = β△sh−1 from the second equation. In more general cases, one can guess (and we

will verify this later) that the estimate of Ih is a weighted average of the two, with the weights being

determined by the relative importance of the two disturbance terms. Once we obtain an estimate

for the hourly amount of intervention in this way, we can estimate α and β without encountering

an endogeneity problem. By repeating this procedure, we are able to estimate the two parameters

as well as the hourly amount of intervention.

More precisely, we are able to obtain the distributions of α and β, given the hourly amount

of intervention and the hourly exchange rate. At the same time, given the two parameters, the

hourly exchange rate, and the daily amount of intervention, we are able to obtain the distribution

of the hourly amount of intervention. Combining these two conditional distributions, we are able to

obtain the joint and marginal distributions of the two parameters as well as the hourly amount of

intervention through Gibbs sampling.

Our method can be seen as an application of “imputation” or “data augmentation” techniques

based on Markov Chain Monte Carlo (MCMC) simulations to the endogeneity problem. The idea

of applying MCMC methods to data augmentation was first proposed by Tanner and Wong (1987).

Similar MCMC methods were used by Pedersen (1995) and Eraker (2001), among others, in the

context of estimating parameters in continuous diffusion processes when only discrete, and sometimes

low-frequency, data are available. However, this paper is the first attempt to make use of MCMC

methods to solve the endogeneity problem. Note that the endogeneity problem we discuss in this

paper occurs simply because the frequency of intervention data is not sufficiently high. In this

sense, our paper deals with the issue of estimation biases caused by “temporal aggregation,” which

has been discussed by Sims (1971), Chow and Lin (1971), Christiano and Eichenbaum (1987), and

McCrorie and Chambers (2006), among others, in a closely-related but different context.

The remainder of the paper is organized as follows. Section 2 provides a detailed explanation of
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our methodology to address the endogeneity problem, while Section 3 presents simulation results to

demonstrate how the methodology works. In Section, 4 we apply our methodology to Japanese data.

We find that an exchange rate intervention (e.g., a sale) of one trillion yen leads to 1.7 percent change

in the value of the yen (depreciation): this is more than twice as large as the magnitude reported in

previous studies such as Ito (2003) and Fratzscher (2005), which apply ordinary least squares to daily

intervention and exchange rate data. This result is consistent with the prediction that endogeneity

creates a bias toward zero for the intervention coefficient, as long as the central bank follows a leaning-

against-the-wind policy. It also shows the quantitative importance of the endogeneity problem due

to temporal aggregation. Section 5 concludes the paper, while the Appendix provides the technical

details of our methodology.

2 Methodology

2.1 The endogeneity problem in identifying the effects of central bank
interventions

In this section, we present a detailed description of our methodology to address the endogeneity

problem in identifying the effects of central bank interventions on the exchange rate. Consider a

simple model of the following form:

st,h − st,h−1 = αIt,h + ϵt,h (1)

It,h = β(st,h−1 − st−1,h−1) + ηt,h (2)

where st,h is the log of the yen/dollar rate at hour h of day t (t = 1, ..., T and h = 1, ..., 24), It,h

is the purchase of yen (and the selling of US dollars) implemented by the Japanese central bank

between h − 1 and h of day t, ϵt ∼ i.i.d.N(0, σ2
ϵ), and ηt,h ∼ i.i.d.N(0, σ2

η). Equation (1) represents

the exchange rate dynamics, while equation (2) is the central bank’s policy reaction function. We

assume that α is negative, implying that yen-selling interventions (It,h < 0) lead to a depreciation

of the yen (st,h − st,h−1 > 0) and vice versa. We also assume that the exchange rate is observable

at the hourly frequency, while interventions are observable only at the daily frequency: namely, we

observe It ≡ Σ24
h=1It,h. Note that if we were able to observe It,h at the hourly frequency, we could

obtain unbiased estimators of α and β by applying OLS to each of the two equations separately.
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Taking partial sums of both sides of the equations leads to a daily model of the following form:

st,24 − st−1,24 = αIt + ϵt (3)

It = β
24∑

h=1

(st,h−1 − st−1,h−1) + ηt (4)

where st,24 − st−1,24 =
∑24

h=1(st,h − st,h−1), It =
∑24

h=1 It,h, ϵt ≡ Σ24
h=1ϵt,h, and ηt ≡ Σ24

h=1ηt,h. This

shows that the endogeneity problem arises in this daily model, so that a simple application of OLS

to each of the two equations separately no longer works. To illustrate this, suppose that the central

bank adopts a leaning-against-the-wind policy, so that β takes a positive value. Then an increase in

ϵt,h leads to an increase in st,h − st,h−1 through equation (1), and to an increase in It,h+1 through

equation (2). This means that It and ϵt in equation (3) are positively correlated, so that an OLS

estimator of α has an upward bias. On the other hand, an increase in ηt,h increases It,h through

equation (2), thereby creating an appreciation of the yen as long as α is negative. This implies that

the error term in equation (4), ηt, and the regressor,
∑

(st,h − st,h−1), are negatively correlated and,

as a result, an OLS estimate of β has a downward bias.

2.2 MCMC simulations

We propose a method for estimating equations (1) and (2) using the daily data for interventions

and the hourly data for the exchange rate. The set of parameters to be estimated is α, β, σ2
ϵ ,

and σ2
η. We first introduce an auxiliary variable, It,h, to substitute missing observations. Then we

obtain a conditional distribution of each parameter, given the other parameters and the values of

the auxiliary variable. Similarly, we obtain a conditional distribution of the auxiliary variable, given

the parameters. Finally, we use the Gibbs sampler to approximate joint and marginal distributions

of the entire parameters and the auxiliary variable from these conditional distributions.5

2.2.1 Prior distributions

We choose the following priors for the unknown parameters. We adopt a flat prior for α and β. On

the other hand, we assume that the priors for σ2
ϵ and σ2

η, are more informative than the flat ones

but still relatively diffused. Specifically, we assume that the prior of σ2
ϵ is given by

IG

(
ν1

2
,
δ1

2

)

5See Kim and Nelson (1999) for more on Gibbs sampling.
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with ν1 = 10 and δ1 = 0.001, implying that the mean of σϵ is 0.011 and that the 95 percent

confidence interval is 0.007 to 0.018. The prior of σ2
η is given by

IG

(
ν2

2
,
δ2

2

)
with ν = 10 and δ = 0.1, implying that the mean of ση is 0.118 and that the 95 percent confidence

interval is 0.071 to 0.176.

2.2.2 Computational algorithm

The above assumptions about the priors and the data generating process, which is given by equations

(1) and (2), provide us with posterior conditional distributions that are needed to implement Gibbs

sampling. The following steps 1 through 5 are iterated to obtain the joint and marginal distributions

of the parameters and the auxiliary Variables. The summations are taken from (t, h) = (1, 1) to

(T, 24), unless otherwise stated.

Step 1 Generate α conditional on st,h, It,h, and σ2
ϵ . We have the regression st,h − st,h−1 = αIt,h +

ϵt,h. Hence, the posterior distribution is α ∼ N(ϕs, ωs) where ϕs =
∑

It,h(st,h−st,h−1)/
∑

I2
t,h

and ωs = σ2
ϵ/

∑
I2
t,h.

Step 2 Generate σ2
ϵ conditional on st,h, It,h, and α. The posterior is σ2

ϵ ∼ IG
(

νs

2 , δs

2

)
where

νs = ν1 + T and δs = δ1 + RSSs with RSSs =
∑

(st,h − st,h−1 − αIt,h)2.

Step 3 Generate β conditional on st,h, It,h, and σ2
η. We have the regression It,h = β(st,h−1 −

st−1,h−1)+ηt,h. Hence, the posterior distribution is β ∼ N(ϕI , ωI) where ϕI =
∑

It,h(st,h−1−

st−1,h−1)/
∑

(st,h−1 − st−1,h−1)2 and ωI = σ2
η/

∑
(st,h−1 − st−1,h−1)2.

Step 4 Generate σ2
η conditional on st,h, It,h, and β. The posterior distribution is σ2

η ∼ IG
(

νI

2 , δI

2

)
where νI = ν2 + T and δI = δ2 + RSSI with RSSI =

∑
(It,h − β(st,h−1 − st−1,h−1))2.

Step 5 Generate It,h conditional on It, α, β, σ2
ϵ , and σ2

η. Consider the case in which the aggregated

intervention amount is not known. Then, the posterior distribution is as follows:

(It,1, ..., It,24)
′
∼ N (Ξt, Ψ)

where Ξt = (ξt,1, ..., ξt,24)′ and Ψ = diag(φ, ..., φ) with ξt,h = 1
σ2

η
β(st,h−1 − st−1,h−1) +

α2

σ2
ϵ
α−1(st,h−st,h−1) and φ = ( 1

σ2
η
+α2

σ2
ϵ
)−1. We consider the posterior distribution of (It,1, ..., It,23, It).
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Notice that when we know (It,1, ..., It,23, It), the intervention in the last hour, It,24, is already

determined. The posterior distribution is as follows:

(It,1, ..., It,23, It)
′
∼ N (Ξ∗

t , Ψ
∗)

where Ξ∗
t = BΞt and Ψ∗ = B′ΨB with

B =


1 0 ... 0

0 1 ... 0
...

...
. . .

...

1 1 ... 1

 . (5)

We can partition the matrices Ξ∗
t and Ψ∗ as follows:

Ξ∗
t =

 Ξ∗
t,1

Ξ∗
t,2

 , Ψ∗ =

 Ψ∗
11 Ψ∗

21

Ψ∗
12 Ψ∗

22

 ,

where Ξ∗
t,1 is 23 × 1, Ξ∗

t,2 is 1 × 1, Ψ∗
11 is 23 × 23, Ψ∗

12 is 1 × 1, Ψ∗
21 is 1 × 1, and Ψ∗

22 is

1 × 1. Finally, we can construct the posterior distribution of (It,1, ..., It,23) conditional on It

as follows:

(It,1, ..., It,23| It)
′
∼ N

(
Ξ∗

t,1 + Ψ∗
12(Ψ

∗
22)

−1(It − Ξ∗
t,2),Ψ

∗
11 − Ψ∗

12(Ψ
∗
22)

−1Ψ∗
21

)
.

By generating the auxiliary variables It,1, ..., It,23 from this posterior distribution conditional

on the parameters and the aggregated intervention, we can construct the intervention in the

last hour as It,24 = It − Σ23
h=1It,h.

We iterate steps 1 through 5 M + N times and discard the realizations of the first M iterations

but keep the last N iterations to form a random sample of size N on which statistical inference

can be made. M must be sufficiently large so that the Gibbs sampler converges. Also, N must be

large enough to obtain the precise empirical distribution. In our simulations, we set M = 2000 and

N = 2000 and run 3 independent Markov chains.

3 Simulation Analysis

In this section we conduct Monte Carlo simulations to evaluate the performance of our methodology.

We start by assuming that the data generating process is given by equations (1) and (2) with

s0,24 = ln(100), α = −0.015, β = 3.2, σϵ = 0.01, and ση = 0.1. We borrow the estimates of α and
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β from Kearns and Rigobon (2005):6 α = −0.015 implies that a 1 trillion yen intervention by the

Japanese monetary authorities moves the yen/dollar rate by 1.5 percent; on the other hand, β = 3.2

implies that a one percent deviation of the exchange rate from its target level causes the Japanese

monetary authorities to intervene with 32 billion yen.

We generate bivariate time series {st,h, It,h} by (1) and (2). The length of the time series is

set at 100 days (T=100), and 500 replications of this length are generated. We repeat this for

T=250 and 500. We then estimate the unknown parameters under the following three cases. The

first one is what we refer to as the “infeasible estimator.” We assume that the hourly amount of

intervention, It,h, is observable to us, and we simply apply OLS to the hourly data of intervention

and exchange rates. This estimator can be seen as the best one (although it is infeasible), and

will be used as a benchmark. The second case we refer to as the “naive OLS estimator,” where

we assume that intervention data is available only at the daily frequency, and we apply OLS to the

daily intervention and exchange rate data. Specifically, we estimate equations (3) and (4) separately.

This estimator suffers from the endogeneity problem, as explained earlier. The third case we refer

to as the “MCMC estimator,” where we assume that exchange rate data is available at the hourly

frequency, but intervention data is available only at the daily frequency, and we apply our MCMC

method to these data.

Table 1 presents the simulation results. We evaluate the performance of the three estimators in

terms of bias, which is defined to be the average deviation of an estimator from its true value, as well

as the root mean squared error.7 We can see that the infeasible estimator is unbiased and precise

in the sense that both the bias and the root mean squared error are small, while the naive OLS

estimator performs much worse. The naive OLS estimators of α and β have upward and downward

biases, respectively, and we see no clear tendency that these biases become smaller with the sample

size T . In contrast, the MCMC estimator performs as well as the infeasible estimator: the bias is

almost the same as in the case of the infeasible estimator; the root mean squared error is slightly

larger, but the difference tends to become smaller with T .

6We divide their estimate of β by 24 to convert their estimate, which is based on a daily frequency, to one based
on an hourly frequency.

7The MCMC method provides us with a posterior distribution for each of the parameters. We use the mean of the
distribution as a point estimate.
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Table 1: Finite sample properties of the three estimators

Infeasible estimator Naive OLS estimator MCMC estimator

Bias
√

MSE Bias
√

MSE Bias
√

MSE

T = 100 α 0.0000 0.0013 0.0102 0.0238 -0.0001 0.0018

β 0.0055 0.0602 -3.6671 6.6171 0.0039 0.0859

T = 250 α 0.0000 0.0009 0.0102 0.0237 0.0000 0.0012

β 0.0091 0.0387 -4.0189 5.1603 0.0075 0.0569

T = 500 α 0.0001 0.0006 0.0103 0.0238 0.0001 0.0008

β 0.0065 0.0274 -4.3055 4.8954 0.0034 0.0401

Note: “Bias” is defined to be the deviation of each estimator from the true value. For example,
the bias associated with α is equal to the mean of estimators of α over 500 replications minus its

true value, namely -0.015. “
√

MSE” represents the root mean squared error for each estimator.
We estimate 3 chains from independent starting points in each replication. Each chain runs 4000
draws and the first 2000 are discarded as the burn-in-phase.

4 Application to Japanese Data

4.1 Policy reaction function with transaction costs

Figures 1 and 2 show the hourly movement of the yen/dollar rate, and the daily amount of in-

tervention, both for the period from April 1991 to December 2002.8 In applying our method to

the Japanese data, we modify the model described by equations (1) and (2) in the following way.

Equation (2) implies that interventions are every-day events: namely, the central bank intervenes

(by a small amount) even on “quiet” days when the exchange rate is fairly stable. But this is not

consistent with the fact that interventions were carried out only on 7 percent of the total business

days, that is, 214 out of 3,055 business days, during the sample period. In this sense, Japanese

interventions have an “all or nothing” property, suggesting that we need to incorporate some form

of transaction costs associated with the conduct of interventions.

Specifically, following Almekinders and Eijffinger (1996) and Ito and Yabu (2007), we assume

that the Japanese monetary authorities have to pay some fixed costs on intervention days, in the

form of political costs. These political costs may include, for example, the costs incurred by the

Japanese government in conducting negotiation with governments of relevant countries, as pointed

8Our sample period does not include the period of “Great Intervention” in 2003 and 2004, during which the
Japanese monetary authorities aggressively purchased US dollars and sold yen as a part of their “quantitative easing”
policy. Previous studies argue that the central bank’s motivation for these interventions was quite different from the
one in the preceding period. See Taylor (2006) for more on the intervention policy during this period.
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out by Ito and Yabu (2007). The Japanese monetary authorities are assumed to compare the

benefits of intervention (greater stability in the exchange rate) and the fixed costs they have to

incur in implementing interventions. As is well known, a solution to this type of optimization with

fixed costs is characterized by a state-dependent rule: namely, the monetary authorities carry out

interventions only when the optimal level of intervention for that day exceeds a threshold. In our

baseline regression we use a state-dependent rule of the form:

It,h = 1(|I∗t,1 − µI | > c)I∗t,h (6)

I∗t,h = µI + β(st,h−1 − st−1,h−1) + ρIt−1 + ηt,h (7)

Equation (7) describes how the optimal level of intervention, I∗t,h, is determined, and equation (6)

represents a state-dependent policy reaction function, where 1(·) represents a zero-one indicator

function. In equation (7), we assume that the optimal level of intervention depends on the change in

the exchange rate over the last 24 hours. We also allow autocorrelation between intervention today

and intervention yesterday so as to capture the tendency for interventions to be clustered, which

was highlighted by Fatum and Hutchison (2003). In equation (6), we assume that intervention is

carried out if the optimal level of intervention at the beginning of a day, I∗t,1, exceeds a prespecified

threshold c, which is determined by the size of the political costs. Note that It,h equals I∗t,h for any

h as long as I∗t,1 exceeds the threshold. In other words, once the monetary authorities decide to

intervene on day t at the beginning of that day, they are allowed to intervene for every hour of day

t without incurring any extra political costs. In this sense, the monetary authorities’ decision on

whether to intervene or not is made only once a day, although the amount of intervention for every

hour of the day is decided during the daytime depending on fluctuations in the exchange rate over

the course of the day.

4.2 Change in intervention strategy

Figure 2 shows that there is a structural break somewhere around 1995: interventions are small in

size but frequent during the former period, while they are larger in size but less frequent during the

latter period. As mentioned by Ito (2003), among others, this break corresponds to a replacement

of the person in charge of the conduct of interventions in June 1995.9 The number of days when

9On June 21, 1995, Eisuke Sakakibara was appointed as Direct General of the International Finance Bureau of
the Ministry of Finance. Regarding exchange rate interventions, he later wrote: “The market was accustomed to
interventions, because they were too frequent. The interventions were taken as given. Most interventions, including
joint interventions, were predictable, so that interventions, even joint ones, had only small, short-term effects, and
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interventions were carried out is 165 out of 1,101 business days during the period from April 1991 to

June 1995, so that the probability of intervention was 0.15. In the latter period, the corresponding

probability was 0.03 (49 intervention days out of 1,954 business days). On the other hand, the

average yen amount of interventions on days when such interventions were conducted was 0.05

trillion yen in the former period and 0.52 trillion yen in the latter period. Kearns and Rigobon

(2005) make use of this shift in the Japanese intervention policy as a key piece of information in

identifying the effects of Japanese intervention on the yen/dollar rate.

We incorporate this structural change in the policy reaction function as follows:

It,h =

 1(|I∗t,1 − µI | > c1)I∗t,h for t < TB

1(|I∗t,1 − µI | > c2)I∗t,h for t ≥ TB

(8)

where TB is the break date (namely, June 1995), and c1 and c2 are different thresholds for the two

subperiods. Here we assume that the change in the Japanese policy reaction function is represented

solely by a change in threshold c, or the size of political costs, and that the other parameters are

identical across the two subperiods. We make this assumption simply to obtain empirical results that

are comparable to those of Kearns and Rigobon (2005), whose identification method requires such

an assumption. Note that our identification method does not require us to impose this assumption.

4.3 Baseline results

In our baseline regression, we use equations (7) and (8), together with the following equation de-

scribing exchange rate dynamics:

st,h − st,h−1 = µs + αIt,h + ϵt,h. (9)

Table 2 presents the results. We run regressions with and without the lagged intervention term It−1,

with the left half of the table showing the result without that term, and the right half showing that

with that term. Details regarding the algorithm used are provided in the Appendix.10

Table 2 shows that the coefficient on the intervention variable, α, in equation (9) is negative and

significantly different from zero in the sense that the 95 percent posterior interval does not include

could not change the sentiment of the market.” (Sakakibara, 2000, p.119) “[A] change in intervention philosophy and
technique [was introduced]. For this, all I had to do was to make a decision and convince the Vice Minister and the
Minister of [its desirability]. For one, the frequency of interventions was reduced substantially, and the per-intervention
amount was increased, in order to push up the level [of the dollar vis-à-vis the yen]” (Sakakibara, 2000, p.120).

10We iterate 20,000 times and discard the first 10,000 realizations (M = 10, 000 and N = 10, 000). We run 5

independent Markov chains and report the Gelman-Rubin statistic R̂ to monitor the convergence of the Markov
chains. R̂ < 1.1 is considered as a sign of convergence. See Gelman et al. (2003) for details. We confirm that
convergence is accepted in every case.
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Table 2: Baseline Results

Without lagged intervention term With lagged intervention term

Mean Std. Dev. Pr(< 0) R̂ Mean Std. Dev. Pr(< 0) R̂

Equation for exchange rate dynamics

α -0.0174 0.0008 1.0000 1.063 -0.0176 0.0008 1.0000 1.017
[-0.0189, -0.0158] [-0.0192, -0.0162]

Equation for policy reaction function

β 0.2253 0.0740 0.0011 1.003 0.2134 0.0713 0.0010 1.001
[0.0828, 0.3743] [0.0751, 0.3546]

ρ 0.0140 0.0084 0.0498 1.000
[-0.0026, 0.0306]

c1 0.1023 0.0053 0.0000 1.058 0.1011 0.0047 0.0000 1.018
[0.0929, 0.1136] [0.0918, 0.1100]

c2 0.1697 0.0085 0.0000 1.067 0.1679 0.0080 0.0000 1.016
[0.1546, 0.1881] [0.1526, 0.1838]

Note: Constants are estimated but not reported. The columns labeled “Mean” and “Std. Dev.” refer to the mean and
standard deviation of the marginal distribution of a parameter. The columns labeled “Pr(< 0)” refer to the frequency
of finding negative values. The columns labeled R̂ refer to the Gelman-Rubin statistic to monitor the convergence

of the Markov chains. R̂ < 1.1 is considered as a sign of convergence. The values in the brackets are the 95 percent
posterior bands of the parameter. We estimate 5 chains from independent starting points. Each chain runs 20, 000
draws and the first half is discarded as the burn-in-phase.

zero. Note that the frequency of finding negative values, Pr(< 0), equals unity, indicating that we

find not one positive values in 10,000 draws. The estimated value of α is equal to -0.0174, implying

that a yen-selling (yen-buying) intervention of one trillion yen leads to a 1.74 percent depreciation

(appreciation) of the yen. The estimate is robust to changes in the specification, i.e., whether a

lagged intervention term is included or not.

Our estimate regarding the impact of foreign exchange interventions is more than twice as large as

that obtained in previous studies. Ito (2003), for example, applying OLS to daily data of Japanese

interventions and the yen/dollar rate, arrived at a corresponding change of 0.6 percent for the

sample period of April 1991 to March 2001 and 0.9 percent for the subperiod from June 1995 to

March 2001. Similarly, Fratzscher (2005), applying a similar regression as Ito (2003 using daily

data for the period 1990-2003, found that Japanese interventions of ten billion dollars, which is

approximately equal to one trillion yen, moves the yen/dollar rate by 0.8 percent. Our much larger
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estimation result suggests that these previous studies suffer from the endogeneity problem, so that

the effectiveness of interventions on the exchange rate was biased toward zero.11

Turning to the coefficients in the policy reaction function, we find, first, that the coefficient on

the change in the exchange rate, β, is positive and significantly different from zero, indicating that

a leaning-against-the-wind policy was adopted by the Japanese monetary authorities during this

sample period, and that they sold (purchased) about 53 billion yen in a day in response to a one

percent appreciation (depreciation) of the yen. Second, the estimates of c1 and c2 are both positive,

as predicted, and, more importantly, c2 is significantly larger than c1, suggesting that the fact that

interventions during the latter sample period were larger but less frequent was due to the greater

political costs. Third, the estimate of autocorrelation between interventions, represented by ρ, is

estimated to be positive, as expected, but not significantly different from zero in terms of the 95

percent confidence interval; however, the probability of it being below zero, Pr(< 0), is slightly less

than 5 percent, indicating that it is still significantly different from zero as far as the one side test

is concerned.

Our MCMC approach gives us a posterior distribution for the auxiliary variable, It,h, for each

t and h. Figure 3 shows the estimates of this variable for each hour on April 10, 1998, when the

Japanese monetary authorities purchased 2.6 trillion yen, the largest yen-buying intervention in

our sample period. The red solid line represents the mean of the posterior distribution of It,h,

while the red dotted lines represent the 95 percent confidence interval. We see that the estimated

hourly amount of intervention is almost always positive (i.e., almost all interventions are yen-buying

interventions), and that it tends to be larger when the yen is weaker, which is consistent with equation

(7). However, the estimated hourly amount takes the largest value, 0.5 trillion yen, at 6-7 am GMT

(or 2-3 pm in Tokyo), and this is exactly the time when the yen exhibits a sharp appreciation and

records its highest level on this day. This can be interpreted as aggressive yen-buying intervention

during this hour causing a sharp appreciation, which is consistent with equation (9). Put differently,

our MCMC approach does “data-augmentation” for It,h so that the estimates of the hourly amount

of intervention become consistent both with equations (7) and (9), given intraday fluctuations in

the exchange rate.

Figure 4 shows the movement of the yen/dollar rate before and after the hour that a yen-selling

11Kearns and Rigobon (2005), who identified the effects of intervention by making use of a structural change in the
policy reaction function, report that an intervention of one billion dollars moves the yen/dollar rate by 1.5 percent,
which is relatively close to our estimate, although it is still outside our 95 percent confidence interval.
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Table 3: Intensive and Extensive Margins of Japanese Interventions

1991-2002 1991-1995 (A) 1995-2002 (B) B/A

Yen-amount per business day [trillion] 0.010 0.007 0.012 1.84

Probability of intervention day 0.070 0.149 0.025 0.16

Yen-amount per intervention day [trillion] 0.155 0.047 0.519 11.06

Probability of intervention hour 0.079 0.061 0.138 2.25

Yen-amount per intervention hour [trillion] 0.081 0.032 0.156 4.89

Note: “Yen-amount of intervention per business day” is defined as the total amount of intervention during
the observation period divided by the number of business days. “Probability of intervention day” is defined
as the number of intervention days divided by the number of business days. “Yen-amount per intervention

day” is defined as the total amount of intervention during the observation period divided by the number of
intervention days. “Probability of intervention hour” is defined as the number of intervention hours divided
by the number of intervention days multiplied by 24. “Yen-amount per intervention hour” is defined as the
total amount of intervention during the observation period divided by the number of intervention hours.

intervention is carried out. For the figure, we collect the estimates of It,h for 148 business days when

yen-selling interventions were reported to have been implemented. We then identify h when the

estimate of It,h exceeds a certain threshold, which in this case is given by the 99 percent confidence

interval. Note that τ = 0 in the figure represents the hour of intervention and that the yen/dollar

rates are divided by the levels at the hour of intervention for normalization. The solid line represents

the 50th percentile, or median, of the distribution of the exchange rate, while the two dotted lines

represent the 40th and 60th percentiles, respectively. The figure shows that there is a trend of yen

appreciation prior to the hour of intervention, indicating that the Japanese monetary authorities

adopt a leaning-against-the-wind policy in the sense that they sell yen and purchase dollars so as to

prevent the yen from appreciating further. It also shows that the value of the yen falls very quickly

in response to the intervention and stays there at least twelve hours after the intervention. This

indicates that interventions have a persistent effect on the level of the yen/dollar rate, even though

the effect on the change in the exchange rate is only temporary. These results are all consistent

with the estimated parameters reported in Table 2 and, more importantly, can be seen as indirect

evidence that the timing of intervention is correctly estimated by our method.

Figure 5 shows the cumulative distribution functions of the number of interventions per day

for the two subperiods.12 In the figure, the horizontal axis represents the number of interventions

(one-hour intervals in which an intervention, or interventions, occur) per day, while the vertical axis

12In Figure 5, we count the number of interventions exceeding the threshold given by the 90 percent confidence
interval.
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shows the probability that this number, or a smaller number, of interventions occur on a given day.

The figure shows that multiple interventions per day are not a rare phenomenon at all; namely, the

probability of two or more interventions per day is 0.33 for the pre-1995 period, and 0.77 for the

post-1995 period. The figure also shows that there exists a substantial difference between the two

subperiods. On average, intervention occurred 1.5 times a day during the pre-1995 period,13 while

they occurred 3.3 times a day during the post-1995 period.

Next, we decompose the yen-amount of intervention per business day into an extensive margin

(i.e., the probability of intervention for a given day) and an intensive margin (i.e., the yen-amount

per intervention day) and compare these for the two subperiods. The results are shown in Table 3.

As can be seen, the post-1995 period is characterized by a lower extensive margin and a higher

intensive margin; this confirms what we saw in Figure 2. But in addition, we can conduct a similar

decomposition at the hourly frequency using our estimate of It,h, and the results are shown on the

two rows from the bottom. The yen amount per intervention day is decomposed into an extensive

margin (the probability of interventions in a given hour on a day that interventions were conducted)

and an intensive margin (the yen-amount per intervention hour).14 Interestingly, although part of

the larger yen-amount per intervention day comes from the larger extensive margin, it mostly derives

from the larger intensive margin. Interestingly, the larger yen-amount per intervention day in the

post-1995 period comes partly from the larger extensive margin, but mostly from the larger intensive

margin. It could therefore be said that the latter period is characterized by a higher intensive margin

not only at the daily frequency, but also at the hourly frequency.

4.4 Alternative specifications of the policy reaction function

An important feature of our MCMC approach is that we make use of the knowledge about the

structure of the economy, which is represented by the equation for exchange rate dynamics and the

equation for policy reaction function. This implies that the performance of the entire estimation

process crucially depends on whether the structure of the economy is properly specified or not.

In this subsection we will check the sensitivity of the baseline results to various changes in the

specification of the policy reaction function.

13This figure is relatively close to Chang and Taylor’s (1998) finding based on Reuters reports that the Japanese
central bank on average intervened 2.2 times a day in 1992-1993. See footnote 4.

14Note that the product of the two margins equals the yen amount per intervention day divided by 24.
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4.4.1 Higher political costs at night

One possible factor determining the reaction function is that political costs are higher at night.

Neely (2001) presents survey results from central banks about various issues related to foreign

exchange intervention. Among the questions he included is one that asked at what times of the

day interventions were conducted. He provided the following optios: “prior to normal business

days,” “morning of the business day,” “afternoon of the business day,” and “after normal business

hours.” One of the interesting features we learn from the responses to this question is that about 56

percent of central banks answered that they never intervene “prior to normal business days,” and

similarly about 35 percent answered that they never intervene “after normal business hours.” Yet,

it is possible that the intervention strategy of the Japan’s monetary authorities are quite different

from that of other monetary authorities because of Japan’s geographical location. However, various

pieces of anecdotal evidence regarding the intervention behavior of Japan’s monetary authorities

suggest that they are active during hours in which the Tokyo market is open, while they are much

less active during other hours, which is more or less similar to what Neely’s (2001) survey results

indicate.

The fact that central banks seldom intervene during night hours may be interpreted as reflecting

that the political costs are higher at night than during the daytime, so that central banks hesitate

to intervene at night even if the optimal level of intervention is not zero. If this is the case, our

assumption regarding political costs may be inappropriate. That is, in the previous subsection we

assumed that the Japanese monetary authorities incur political costs at the beginning of a day,

and once such costs have been incurred at that time, they are allowed to intervene at any time

of that day, including night time, without incurring any additional political costs. An alternative

specification would be that the Japanese monetary authorities incur additional political costs, which

are very high (probably prohibitively high), when they intervene at night.

Based on this line of reasoning, we assume that It,h is equal to zero at night (h = 9, . . . , 24, or

between 6 pm and 9 am Tokyo time). Specifically, we replace equation (8) by:

It,h =


1(|I∗t,1 − µI | > c1)I∗t,h for h = 1, . . . , 8, and t < TB

1(|I∗t,1 − µI | > c2)I∗t,h for h = 1, . . . , 8, and t ≥ TB

0 for h = 9, . . . , 24

(10)

and repeat the same exercise as before. The regression result is presented in Table 4, showing that

the baseline result obtained earlier is not sensitive to this change in the policy reaction function. The
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Table 4: Intervention Only in the Tokyo Market

Without lagged intervention With lagged intervention

Mean Std. Dev. Pr(< 0) R̂ Mean Std. Dev. Pr(< 0) R̂

Equation for exchange rate dynamics

α -0.0117 0.0005 1.0000 1.034 -0.0117 0.0005 1.0000 1.017
[-0.0127, -0.0107] [-0.0127, -0.0107]

Equation for policy reaction function

β 0.5251 0.1799 0.0019 1.004 0.5205 0.1828 0.0021 1.004
[0.1707, 0.8797] [0.1584, 0.8708]

ρ 0.0422 0.0211 0.0247 1.002
[0.0001, 0.0827]

c1 0.1491 0.0070 0.0000 1.045 0.1499 0.0073 0.0000 1.017
[0.1361, 0.1638] [0.1365, 0.1651]

c2 0.2526 0.0113 0.0000 1.043 0.2541 0.0118 0.0000 1.020
[0.2327, 0.2764] [0.2326, 0.2786]

coefficient associated with the effectiveness of intervention, α, is negative and significantly different

from zero, as before, although it is now a little smaller, indicating that an intervention of one trillion

yen moves the yen/dollar rate by 1.17 percent. Second, the coefficient on the change in the exchange

rate in the policy reaction function, β, is positive and significantly different from zero, indicating

again that the Japanese monetary authorities adopt a leaning-against-the-wind policy. Third, the

coefficients related to the size of the political costs, c1 and c2, are both positive and significantly

different from zero, as before, and the political costs are significantly larger in the latter sample

period.

4.4.2 Alternative forms of the optimal intervention function

Next, we consider alternative forms of the optimal intervention function. Equation (7), which is

basically identical to the intervention function adopted by Kearns and Rigobon (2005), may be too

simple to capture details of Japanese intervention policy. Ito and Yabu (2007) propose a policy

reaction function that can be regarded as a better approximation to the Japanese policy reaction

function. Specifically, they assume that the optimal amount of intervention depends on the deviation

of the actual exchange rate from its target level, which is determined by the weighted average of
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Table 5: Alternative Specification of Optimal Intervention Function

Without lagged intervention With lagged intervention

Mean Std. Dev. Pr(< 0) R̂ Mean Std. Dev. Pr(< 0) R̂

Equation for exchange rate dynamics

α -0.0175 0.0008 1.0000 1.059 -0.0174 0.0008 1.0000 1.029
[-0.0190, -0.0159] [-0.0188, -0.0159]

Equation for policy reaction function

β1 0.1494 0.0858 0.0400 1.002 0.1572 0.0863 0.0333 1.004
[-0.0178, 0.3197] [-0.0106, 0.3274]

β2 0.0757 0.0544 0.0823 1.003 0.0690 0.0548 0.1041 1.003
[-0.0295, 0.1819] [-0.0356, 0.1766]

β3 -0.0038 0.0236 0.5639 1.005 -0.0057 0.0229 0.5975 1.002
[-0.0499, 0.0432] [-0.0510, 0.0388]

ρ 0.0128 0.0086 0.0689 1.001
[-0.0041, 0.0297]

c1 0.1017 0.0053 0.0000 1.054 0.1027 0.0051 0.0000 1.028
[0.0920, 0.1125] [0.0933, 0.1132]

c2 0.1689 0.0083 0.0000 1.057 0.1704 0.0081 0.0000 1.025
[0.1538, 0.1865] [0.1556, 0.1870]

st−1,h−1, st−21,h−1, and sMA
t−1,h−1, where sMA

t,h is defined as the moving average of the exchange rate

over the last one year. To incorporate this idea into our model, we replace equation (7) by:

I∗t,h = µI + β1(st,h−1 − st−1,h−1) + β2(st,h−1 − st−21,h−1) + β3(st,h−1 − sMA
t,h−1) + ρIt−1 + ηt,h (11)

Note that equation (7) is a special case of the above equation with both of β2 and β3 being equal

to zero.

We conduct the same exercise as before and the results are presented in Table 5. We confirm

two features of the baseline results: the coefficient associated with the effectiveness of intervention,

α, is negative and significantly different from zero; the coefficients related to political costs, c1 and

c2, are both positive and significantly different from zero. Turning to the new coefficients in the

policy reaction function, β1 and β2 are both positive as before, but β3 is almost zero, indicating the

Japanese monetary authorities take a leaning-against-the-wind posture with respect to changes in

the exchange rate at the daily and monthly frequency, but not at the annual frequency.15

15Ito (2003) estimates a policy reaction function that is similar to equation (11), but with simple OLS, and obtains
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5 Conclusion

Estimating the effects of central bank interventions is not an easy task because the central bank

reacts even to intraday changes in the exchange rate, while intervention data at best is available at

the daily frequency. In this paper, we therefore proposed a new methodology based on Markov Chain

Monte Carlo simulation to cope with this endogeneity problem. We first conduct “imputation” or

“data augmentation” to obtain intraday amounts of intervention and then estimate the efficacy of

interventions using the augmented data. Applying this method to Japanese intervention data, we

found that an intervention of one trillion yen moves the yen/dollar rate by 1.7 percent, which is more

than twice as large as the magnitude reported in previous studies applying OLS to daily observations.

We interpreted this difference as highlighting the quantitative importance of the endogeneity problem

due to temporal aggregation. Some previous studies pursued the idea of augmenting the observed

low-frequency data with simulated high-frequency data, especially in the area of finance, but this

paper is the first attempt to apply this idea in addressing the endogeneity problem.

Our method should work well in an environment in which the true structure of the economy,

including the policy reaction function, is well known to researchers. Our empirical analysis demon-

strated that this is indeed the case for Japanese foreign exchange interventions. However, given that

not much research has been conducted on central banks’ intraday behavior, our knowledge about

this is still limited. Specifically, in our empirical section, we needed to make guesses regarding the

form of the reaction function at the hourly frequency, assuming that this was similar to the reac-

tion function at the daily frequency, which has been extensively investigated in previous studies.

However, it cannot be ruled out that monetary authorities behave differently depending on the time

frame (i.e., interday or intraday). It is our future task to accumulate knowledge about this.

β1 = 1.0422; β2 = 0.1369; β3 = 0.0632.
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A Estimation procedure of the model with political costs

The methodology for estimating the model without political costs given by equations (1) and (2) is

presented in Section 2.2. The purpose of this appendix is to provide details regarding the estimation

of the model with political costs represented by equations (6) and (7). The parameters to be

estimated are µs, α, µI , β, c1, c2, σ2
ϵ , and σ2

η. In addition to these parameters, we estimate auxiliary

variables, It,h and I∗t,h, for each h and t. A flat prior is adopted for µs, α, µI , β, c1, and c2. As for

σ2
ϵ and σ2

η, priors are the same as those used in Section 3.

The posterior conditional distributions, which are needed to implement Gibbs Sampling, are

obtained from the priors and the assumptions of the data generating process. The following steps 1

through 6 are iterated to obtain joint and marginal distributions of the parameters and the auxiliary

variables.

Step 1 Generate µs and α conditional on st,h, It,h, and σ2
ϵ . We have the regression st,h − st,h−1 =

µs + αIt,h + ϵt,h. Hence, the posterior distribution is (µs, α)
′ ∼ N(ϕs, ωs) where ϕs =

(X
′

sXs)−1X
′

sYs and ωs = (X
′

sXs)−1σ2
ϵ with the matrices Xs = {1, It,h} and Ys = {st,h −

st,h−1}.

Step 2 Generate σ2
ϵ conditional on st,h, It,h, µs, and α. The posterior is σ2

ϵ ∼ IG
(

νs

2 , δs

2

)
where

νs = ν1 + T and δs = δ1 + RSSs with RSSs =
∑

(st,h − st,h−1 − µs − αIt,h)2.

Step 3 Generate µI and β conditional on st,h, I∗t,h, and σ2
η. We have the regression I∗t,h = µI +

β(st,h−1 − st−1,h−1) + ηt,h. Hence, the posterior distribution is (µI , β)
′ ∼ N(ϕI , ωI) where

ϕI = (X
′

IXI)−1X
′

IYI and ωI = (X
′

IXI)−1σ2
η with the matrices XI = {1, st,h−1 − st−1,h−1}

and YI = {I∗t,h}.

Step 4 Generate σ2
η conditional on st,h, I∗t,h, µI , and β. The posterior is σ2

η ∼ IG
(

νI

2 , δI

2

)
where

νI = ν2 + T and δI = δ2 + RSSI with RSS =
∑

(I∗t,h − µI − β(st,h−1 − st−1,h−1))2.

Step 5 Generate It,h and I∗t,h conditional on st,h, It, µs, α, µI , β, c1, c2, σ2
ϵ , and σ2

η. Consider the

case without the political costs. The posterior distribution without knowing It is as follows:

(It,1, ..., It,24)
′
∼ N (Ξt, Ψ)

where Ξt = (ξt,1, ..., ξt,24)′ and Ψ = diag(φ, ..., φ) with ξt,h = 1
σ2

η
(µI + β(st,h−1 − st−1,h−1)) +

α2

σ2
ϵ
α−1(st,h−st,h−1−µs) and φ = ( 1

σ2
η
+α2

σ2
ϵ
)−1. Hence, the posterior distribution of (It,1, ..., It,23, It)
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is as follows:

(It,1, ..., It,23, It)
′
∼ N (Ξ∗, Ψ∗)

where Ξ∗
t = BΞt and Ψ∗ = B′ΨB with B defined by (5). We can partition the matrices Ξ∗

t

and Ψ∗ as follows:

Ξ∗
t =

 Ξ∗
t,1

Ξ∗
t,2

 , Ψ∗ =

 Ψ∗
11 Ψ∗

21

Ψ∗
12 Ψ∗

22


where Ξ∗

t,1 is 23 × 1, Ξ∗
t,2 is 1 × 1, Ψ∗

11 is 23 × 23, Ψ∗
12 is 1 × 1, Ψ∗

21 is 1 × 1, and Ψ∗
22 is 1 × 1.

Then we can construct the posterior distribution of (It,1, ..., It,23) conditional on It as follows:

(It,1, ..., It,23|It)
′
∼ N

(
Ξ̂, Ψ̂

)
where Ξ̂ = Ξ∗

1 + Ψ∗
12(Ψ

∗
22)

−1(It − Ξ∗
2) and Ψ̂ = Ψ∗

11 − Ψ∗
12(Ψ

∗
22)

−1Ψ∗
21. We can partition the

matrices Ξ̂ and Ψ̂ as follows:

Ξ̂t =

 Ξ̂t,1

Ξ̂t,2

 , Ψ̂ =

 Ψ̂11 Ψ̂21

Ψ̂12 Ψ̂22


where Ξ̂t,1 is 1 × 1, Ξ̂t,2 is 22 × 1, Ψ̂11 is 1 × 1, Ψ̂12 is 1 × 22, Ψ̂21 is 22 × 1, and Ψ∗

22 is

22×22. Then the posterior distribution of It,1 conditional on It is It,1| It ∼ N(Ξ̂t,1, Ψ̂11). The

posterior distribution of (It,2, ..., It,23)
′
conditional on It and It,1 is as follows:

(It,2, ..., It,23| It, It,1)
′
∼ N

(
Ξ̂t,2 + Ψ̂21(Ψ̂11)−1(It − Ξ̂t,1), Ψ̂22 − Ψ̂21(Ψ̂11)−1Ψ̂12

)
(12)

Since we have the political costs, It,h and I∗t,h are generated from the following:

t ∈ { It ̸= 0, t < TB} : Generate It,1 from a truncated normal distribution such as N(Ξ̂t,1, Ψ̂11)

conditional on |It,1 − µI | > c1. Then generate (It,2, ..., It,23)
′

from (12) and construct

It,24 = It −
∑23

h=1 It,h. Set I∗t,h = It,h for h = 1, ..., 24.

t ∈ {It = 0, t < TB} : Generate I∗t,1 from a truncated normal distribution such as N(µI +

β1(st−1,24 − st−2,24), σ2
η) conditional on |I∗t,1 −µI | < c1. Then generate I∗t,h from N(µI +

β1(st,h−1 − st−1,h−1), σ2
η) for h = 2, ..., 24. Set It,h = 0 for h = 1, ..., 24.

t ∈ {It ̸= 0, t ≥ TB} : Generate It,1 from a truncated normal distribution such as N(Ξ̂t,1, Ψ̂)

conditional on |It,1 − µI | > c2. Then generate (It,2, ..., It,23)
′

from (12) and construct

It,24 = It −
∑23

h=1 It,i. Set I∗t,h = It,h for h = 1, ..., 24.
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t ∈ {It = 0, t ≥ TB} : Generate I∗t,1 from a truncated normal distribution such as N(µI +

β1(st−1,24 − st−2,24), σ2
η) conditional on |I∗t,1 −µI | < c2. Then, generate I∗t,h from N(µI +

β1(st,h−1 − st−1,h−1), σ2
η) for h = 2, ..., 24. Set It,h = 0 for h = 1, ..., 24.

Step 6 Generate c1 and c2 conditional on µs, α, µI , β, σ2
ϵ , and σ2

η. Define the cumulative dis-

tribution functions of N(Ξ̂t,1, Ψ̂11) and N(µI + β1(st−1,24 − st−2,24), σ2
η) as ΦIt ̸=0

t and ΦIt=0
t ,

respectively. The posterior distribution of c1 is

Πt<TB

[
ΦIt=0

t (c1 + µI) − ΦIt=0
t (−c1 + µI)

]1(It=0) [
1 − ΦIt ̸=0

t (c1 + µI) + ΦIt ̸=0
t (−c1 + µI)

]1(It ̸=0)

.

Similarly, the posterior distribution of c2 is

Πt≥TB

[
ΦIt=0

t (c2 + µI) − ΦIt=0
t (−c2 + µI)

]1(It=0) [
1 − ΦIt ̸=0

t (c2 + µI) + ΦIt ̸=0
t (−c2 + µI)

]1(It ̸=0)

.

These densities are intractable and hence we implement the Metropolis-Hastings algorithm to

draw from them.

We iterate steps 1 through 6 M + N times and discard the realizations of the first M iterations

but keep the last N iterations to form a random sample of size N on which statistical inference can

be made. We set M = 10, 000 and N = 10, 000.
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Figure 1: Hourly fluctuations in the yen-dollar rate 
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Figure 2: Daily amounts of Japanese interventions 
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Figure 3: Estimated hourly amounts of intervention on April 10, 1998
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Figure 4: Exchange rates before and after yen-selling intervention
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