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Abstract

We empirically investigate the nonstationarity property of the dollar-yen ex-
change rate by using an eight year span of high frequency data set. We per-
form a statistical test of strict stationarity based on the two-sample Kolmogorov-
Smirnov test for the absolute price changes, and the Pearson’s chi-square test
for the number of successive price changes in the same direction, and find
statistically significant evidence of nonstationarity. We further study the
recurrence intervals between the days in which nonstationarity occurs, and
find that the distribution of recurrence intervals is well-approximated by an
exponential distribution. Also, we find that the mean conditional recurrence
interval 〈T |T0〉 is independent of the previous recurrence interval T0. These
findings indicate that the recurrence intervals is characterized by a Poisson
process. We interpret this as reflecting the Poisson property regarding the
arrival of news.

Keywords: Econophysics, Foreign exchange market, Strict stationarity,
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chi–square test, Poisson process

1. Introduction

Financial time series data have been extensively investigated using a wide
variety of methods in econophysics. These studies tend to assume, explicitly
or implicitly, that a time series is stationary, since stationarity is a require-
ment for most of the mathematical theories underlying time series analysis.
However, despite its nearly universal assumption, there is little previous stud-
ies that seek to test stationarity in a reliable manner. (Tóth1a et al. (2010)).

For low frequency financial data (i.e. monthly or daily data), a num-
ber of procedures to test stationarity have been advocated and applied to
various time series processes in econometrics. Most of them focus on the
first two moments of a process; namely, they test covariance stationarity.
These tests work well for normally distributed random variables. However,
for high frequency financial data, such as tick by tick data, it is well known
that price change distributions are fat-tailed, and substantially deviate from
a normal distribution. These fat-tail distributions cannot be dealt with by
the stationarity tests focusing on the first two moments.

In this paper, we advocate a test for strict stationarity, which considers
the entire distribution of a process rather than the first two moments of the
process, and apply this test to the dollar-yen exchange rate.

We describe the data used in this paper in Sec. 2. In Sec. 3, we ex-
plain our procedure to test stationarity, which is based on the two-sample
Kolmogorov–Smirnov test and the Pearson’s chi–square test. In Sec. 4, we
present empirical results. In Sec. 5, we discuss some implications of our
results.

2. Data description

The tick-by-tick data we study is the USD-JPY exchange rate provided
by ICAP EBS with a recording frequency of every one second, for the period
of January 1998 through December 2005. The foreign exchange market is the
most liquid and largest financial market in the world. Most of spot interbank
transactions are executed through the global electronic broking systems such
as ICAP EBS and Reuters. In the USD-JPY exchange rate, the ICAP EBS
has a strong market share.
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We exclude observations for special days such as Mondays, weekends,
holidays, official intervention days (i.e. the government and/or the central
bank intervenes in the foreign exchange market in order to stabilize the rate),
which are obviously different from regular business days. We analyze the time
series of 1-tick price changes of the mid-quote price, which is defined as the
average of the best bid and the best ask. The best bid and the best ask,
representing lowest sell offer and highest buy offer, are recorded at the end
of one second time slice.

In this paper, we focus on the following two time series. The first one is
the time series for the absolute price changes. We refer to this time series
as G. The second one is the time series for the number of successive price
changes in the same direction. We refer to this time series as D. Note that,
in producing this time series, we drop observations with no price changes.
For example, a particular sequence of 16 1-tick price changes

{0.01, 0.02, 0.01,−0.02, 0,−0.03,−0.01, 0.02, 0, 0.02,−0.04, 0.01,−0.02,−0.03}

is represented by

{0.01, 0.02, 0.01, 0.02, 0, 0.03, 0.01, 0.02, 0, 0.02, 0.04, 0.01, 0.02, 0.03, }

in G sequence and
{3, 3, 2, 1, 1, 2}

in D sequence.

3. Stationary test

For Gaussian time series processes, one can test stationarity by measur-
ing any number of simple statistics, such as the mean or standard deviation,
and employing a standard statistical test. But such an approach is not par-
ticularly good for high frequency financial time series, because from seminal
work by Mantegna and Stanley (1995) we know that the distributions of
price changes have fat-tails often approximated by a power law (Ohnishi
et al. (2008)). Therefore the procedure for Gaussian processes cannot be
applied to high frequency financial data.

Our analysis is based on a precise definition of stationarity: that is, the
joint distribution of any two segments of data of the same length should be
identical. Formally, a stochastic process Xt is called strictly stationary if for
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any set of times t1, t2, · · · , tn and any k the joint probability distributions
of {Xt1 , Xt2 , · · · , Xtn} and of {Xt1+k, Xt2+k, · · · , Xtn+k} coincide. That is, it
requires that the joint distribution depends only on time lags. It follows that
the mean remains constant, and that the autocorrelation function depends
only on time lags, and not on time index.
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Figure 1: Cumulative probability distributions of absolute price changes G. Colors repre-
sent different hour of a day.
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Figure 2: Cumulative probability distributions of the number of successive price changes
in the same direction D. Colors represent different hour of a day.

Traders behave differently even within a day, depending on, say, whether
it is in the morning session, or it is in the afternoon session. Specifically, we
know that the absolute price changes (Ohnishi et al. (2008)) and activities
(Ito and Hashimoto (2006)) display an intraday pattern. Figure 1 and 2
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Figure 3: We compare two sub-series on the same hour of different days.

show the cumulative distribution of G and D, respectively. These distribu-
tions differ depending on the hour of a day. To remove the intraday pattern,
we assume that the time series can be regarded as approximately stationary
at least during the one-hour period. Based on this assumption, we decom-
pose the entire observations into the subsets, each of which is identified by
hour h and day t. We then compare the subset (h, t) (i.e. the set of obser-
vations belonging to hour h of day t) with the subset (h, t

′
) (i.e. the set of

observations belonging to hour h and day t
′
), as illustrated schematically in

Fig. 3.
To test for stationarity, we take the approach of comparing the distri-

bution of observations belonging to the subset (h, t) and the distribution of
observations belonging to the subset (h, t

′
) to see if the two distributions are

identical. Tests are performed by using the two-sample Kolmogorov–Smirnov
test for G, and the Pearson’s chi-square test for D. The stationarity is deter-
mined at a 5 percent significance level. The two-sample Kolmogorov–Smirnov
test compares two cumulative distribution functions of G, then maximum dif-
ference between these two cumulative distribution functions yields P-value.
The Pearson’s chi-square test is performed by considering a histogram of D
having 4 bins, that is D = 1, D = 2, D = 3 and D ≥ 4. These two tests
have the advantage of being nonparametric, and without making assump-
tions about the distribution function of the data, it returns the probability
that two sets of data are drawn from the same distribution.

4. Results

First, we compare the distribution of observations in the subset (h, t) and
the distribution of observations in the subset (h, t

′
) for every pair of t and

t
′
. This exercise is repeated N0 ∼ 106 times. Then, we count the number of

times, which is denoted by N , in which we reject the null hypothesis that the
two distributions are identical. Figure 4 shows the results of this exercise.
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Figure 4: Percentage of all pairs whose difference lies beyond the expected value at a
5 percent significance level. Closed symbols give the results for G; open symbols give
results for D. This percentage is greater than 5 percent, displaying clear evidence of
nonstationarity.

The y-axis represents N/N0. Note that if the entire time series is stationary,
the rejection rate would be 5 percent. The x-axis is the hour of a day. The
closed symbols represent the result of this exercise for G, while the open
symbols represent the result for D. We see that, for each h, the rejection
rate is much larger the critical value, i.e. 5 percent, indicating that the null
hypothesis of stationarity is clearly rejected. We suspect that this is the
result of long time correlations in the time series of the absolute value of
price changes (volatility clustering). Turning to the results for D, we again
find that, for each h, the rejection rate is significantly above the critical value.
Therefore, we conclude from these exercises that the exchange rate process
is not a stationary process.

Next, we repeat the same test, but this time we compare observations in
the subset (h, t) and observations in the subset (h, t+ τ) for different values
of τ . Figure 5 shows the results of this exercise. The y-axis represents the
rejection rate, which is averaged over different h and t. The x-axis represents
time lags τ . The closed symbols are the results for G. For τ = 1 day
as many as 34% are nonstationary. That number rises to more than 45%
for τ ≥ 60 days. The open symbols are the results for D, showing similar
feature. For τ = 1 day as many as 18% are nonstationary. The percentage
monotonically increases as time lag τ increases. As time lag increases, there
is more opportunity for different distributions to emerge, and stationarity is
lost.
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Figure 5: Percentage of all pairs whose difference lies beyond the expected value at a 5
percent significance level. Closed symbols give the results for G; open symbols give results
for D. This percentage increases with the time lag τ , suggesting that the data become
more nonstationary as the time lag increases.

To investigate the properties of nonstationality in more details, we focus
on the interval (in days) between two different distributions emerge. Specifi-
cally, we pick up every event that the distribution changes. The series of the
time intervals {T} between those event are generated. The cumulative prob-
ability distributions as a function of the scaled recurrence intervals T/ 〈T 〉 is
shown in Fig. 6 and 7 for G and D, respectively. For each hour of the day,
these distributions follow an exponential distribution, where 〈T 〉 is about 10
days for G and 3 days for D.

The independence of T is also verified in the mean conditional interval
〈Ti+1|Ti〉, which is defined as the mean of recurrence intervals Ti+1 con-
ditional on the preceding interval Ti as shown in Fig. 8, where we plot
〈Ti+1|Ti〉 / 〈T 〉 as a function of Ti+1/ 〈T 〉. It is seen clearly that for both
G and D 〈Ti+1|Ti〉 / 〈T 〉 fluctuates around a horizontal line close to 1, indi-
cating that Ti+1 independent of the previous Ti. Thus, there is no memory
effect in recurrence intervals. The numbers of occurrences counted in disjoint
periods are independent from each other (i.e. independent increments).

Finally, Fig. 9 and 10 show the cumulative number of occurrence of non-
stationarity as a function of time (t days). For both G and D, the cumulative
number exhibits an almost linear increase, that is, the slope of the cumula-
tive number is constant. Thus, the probability distribution of the number of
occurrences counted in any time period depends only on the length of the
period (i.e. stationary increments).
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Figure 6: Cumulative probability distributions of recurrence intervals T for G. Symbols
represent different hour of a day varying from 0 to 23 hour. The straight line is for
demonstration and have a slope of −1.

In sum, we have found that the occurrence of nonstationarity possesses
the following properties: Poisson distribution of the recurrence intervals,
independent increments, and stationary increments. Hence, the occurrence
of nonstationarity is well-modeled by the Poisson process. Nonstationarities
occur at random instants of time at an average rate of λ per day, where
λ = 1/ 〈T 〉 is about 0.1 for G and 0.33 for D.

5. Discussion

We have studied the time series of the absolute price changes and the num-
ber of successive price changes in the same direction. First, we have tested
nonstationarity of the time series based on the two-sample Kolmogorov-
Smirnov test and Pearson’s chi-square test. We have found that both the
absolute price changes and the number of successive price changes deviate
substantially from a stationary process. Second, we have investigated the
properties of nonstationarity. We have found that the recurrence intervals
between the days nonstationarity occurs is modeled by the Poisson process.

For the absolute price changes, long-term correlations are likely to reflect
nonstationarity. However, the origin of nonstationarity might be different
from long-term memory of the volatility, because our observations of the re-
currence intervals disagree with the results reported by the previous studies
based on the return intervals between price volatility above a certain thresh-
old, where the return intervals strongly depend on the previous return inter-
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Figure 7: Cumulative probability distributions of recurrence intervals T for D. Symbols
represent different hour of a day varying from 0 to 23 hour. The straight line is for
demonstration and have a slope of −1.

val (Yamasaki et al. (2005); Wang et al. (2006, 2007); Vodenska-Chitkushev
et al. (2008); Jung et al. (2008)).

The results for the number of successive price changes are very interesting,
because the number depends not on the size of price changes, but on the
signs of price changes. The previous papers have found some evidence for
the presence of the memory effect in the sign of price changes

(Mizuno et al. (2003); Hashimoto et al. (2008)), but the length of memory
reported in those papers is about several ten seconds, clearly too short-lived
to account for the nonstationarity observed in the previous section.

Despite both time series capture different features of price changes, the
recurrence intervals of nonstationarity is characterized by the Poisson process
for both cases. Therefore, the most possible explanation for nonstationarity
is the arrival of news, which is considered to be well described by the Poisson
process. The efficient market hypothesis claims that prices reflect all news
coming into the markets very rapidly. It may be the case that nonstationarity
of price changes is a reflection of nonstationarity of the arrival of news.

Nonstationarity poses a serious problem for the calculation of auto-correlation
function of the time series. The correlation coefficients themselves may not
be constant, which gives an unexpected estimation error. These findings
could lead to a better understanding and modeling of the price dynamics.
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Figure 8: Scaled mean conditional interval 〈Ti+1|Ti〉 / 〈T 〉 as a function of scaled preceding
interval Ti+1/ 〈T 〉. Closed symbols give the results for G; open symbols give results for D.
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