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Abstract

We discuss a mechanism through which inversion symmetry (i.e., invariance of a

joint probability density function under the exchange of variables) and Gibrat’s

law generate power-law distributions with different tail exponents. Using a

dataset of firm size variables, that is, tangible fixed assets K, the number of

workers L, and sales Y , we confirm that these variables have power-law tails with

different exponents, and that inversion symmetry and Gibrat’s law hold. Based

on these findings, we argue that there exists a plane in the three dimensional

space (logK, logL, log Y ), with respect to which the joint probability density

function for the three variables is invariant under the exchange of variables.

We provide empirical evidence suggesting that this plane fits the data well,

and argue that the plane can be interpreted as the Cobb-Douglas production

function, which has been extensively used in various areas of economics since it

was first introduced almost a century ago.

Keywords: econophysics, power law, Gibrat’s law, inversion symmetry

1. Introduction

In various phase transitions, it is universally observed that physical quanti-

ties near critical points obey power laws. For instance, in magnetic substances,

specific heat, magnetic dipole density, and magnetic susceptibility follow power

laws of heat or magnetic flux. It is also known that the cluster-size distribu-

tion of the spin follows power laws. The renormalization group approach has

been employed to confirm that power laws arise as critical phenomena of phase

transitions [1].
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There is a wide range of evidence that power laws can also be observed

with regard to economic phenomena. The pioneering work was Ref. [2], in

which personal income in England was shown to follow a power-law distribution.

More recently, power-law distributions have been found in a wide variety of

economic data [3]—[17], and across a variety of countries around the world [18]—

[22]. However, no consensus has emerged as to the mathematical mechanisms

that explain the emergence of power laws in economic data (see, e.g., [23]—[26]),

even though numerous models have been developed to describe how power laws

are generated in the natural sciences.

Given this background, the present paper seeks to understand how power

laws emerge in economic data. The strategy we adopt is to focus on the rela-

tionship among various regularities (or laws) observed in economic data, such

as Gibrat’s law and inversion symmetry. This approach was first proposed by

Ref. [27] in the context of examining the dynamics of a single economic variable.

Specifically, they first assume that a variable x obeys a power-law distribution

for x greater than a threshold x0. The cumulative distribution function (CDF)

of x, which is denoted by P>(x), is given by

P>(x) ∝ x−μ for x > x0 . (1)

Next, they consider the joint probability density function (PDF) of x in time t

and t+ 1, which is denoted by PJ (x(t), x(t+ 1)), and assume that

PJ(x(t), x(t+ 1)) = PJ (x(t+ 1), x(t)) , (2)

which is referred to as time-reversal symmetry (or detailed balance) and denoted

as x(t + 1) ↔ x(t). It is also assumed that the distribution of the growth rate

of x from t to t+ 1, which is denoted by R, does not depend on the value of x

at t when it exceeds the threshold x0; that is,

Q(R|x(t)) = Q(R) for x(t) > x0 , (3)

where the growth rate R is defined by R = x(t + 1)/x(t). In other words,

Gibrat’s law [29, 30] holds when x(t) exceeds the threshold.

Time-reversal symmetry (2) and Gibrat’s law (3) for values exceeding a

certain threshold imply that both x(t+1) and x(t) have power-law tails [27, 28].

This property has been investigated in more detail by a number of studies. For

example, Ref. [31] uses a numerical approach to show that x has a power-law

tail when x is a random multiplicative process satisfying (2) and (3). On the

other hand, Ref. [32] shows that power laws do not emerge if Gibrat’s law holds

for all values of x rather than only for values exceeding a certain threshold.

Similarly, there are some studies on random multiplicative processes, including

[26, 8], that have shown that Gibrat’s law must be violated for some small values

of x in order to obtain power laws. Also, some empirical studies, including [11,

12, 27, 28], confirm the emergence of power laws from time-reversal symmetry

and Gibrat’s law using economic data such as personal income, land prices, and

firm size variables. Moreover, Ref. [13] has shown that the distribution of the
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rate of increase of stock prices, Q(R = x(t + τ)/x(t)), where τ represents the

time interval ranging from 1 minute to 1,000 minutes, follows a tent-shaped

distribution once it is normalized by τ .

Somewhat surprisingly, most existing studies focus on a single variable and

seek to understand how the power law of that single variable is generated. In this

paper, we depart from this approach by looking at the interaction of multiple

variables at a particular point in time (say, in a particular year) as a mechanism

generating power laws. Specifically, we focus on the interaction of firm size

variables at a particular point in time. Needless to say, different firm size vari-

ables of a particular firm at a particular point in time are correlated with each

other. Specifically, Refs. [18, 33] have shown that firm sales and the number of

workers follow power laws with different exponents and, more importantly, that

there exists a nonlinear relationship between them. The presence of a nonlinear

relationship among power-law variables with different tail exponents was also

discussed by [34]—[36]. In this paper, we seek to investigate such nonlinear re-

lationships in more detail with the aim of providing a new explanation of the

origin of power-law distributions.

The rest of the paper is organized as follows. In Sec. 2, we provide a brief

review of how power laws emerge from inversion symmetry and Gibrat’s law.

Next, in Sec. 3, we apply the approach discussed in Sec. 2 to the data on tangible

fixed assets K and sales Y to show the presence of inversion symmetry for the

joint PDF of K and Y as well as the presence of a spatial version of Gibrat’s

law. In Sec. 4, we then extend the discussion in Sec. 2 to three dimensional

space. We show that there exists a plane in three dimensional space (logK,

logL, log Y ), with respect to which the joint probability density function of the

three variables is invariant under the exchange of variables. The plane is given

by log Y = α logK +β logL+ logA, where α, β and A are positive parameters.

This functional form is referred to as the Cobb-Douglas production function by

economists and has been extensively used in various areas of economics since

it was first introduced by [37] almost a century ago. Finally, in Sec. 5, we

summarize our findings and discuss some additional issues.

2. Quasi-Inversion Symmetry

In this section, we explain how power laws emerge from inversion symmetry

and Gibrat’s law, closely following the model of Refs. [11, 12]. Let us begin by

defining two random variables u and v and assuming that the joint PDF of u

and v, which is denoted by PJ (u, v), is invariant under the exchange of variables.

Specifically, it is assumed that the following equation holds:

PJ (u, v) = PJ

µ³v
a

´1/θ
, auθ

¶
, (4)

where a and θ are parameters. We denote such invertibility as v ↔ auθ and,

following [11, 12], refer to (4) as quasi-inversion symmetry following Refs. [11,

12]. Note that this is an extension of time-reversal symmetry (2), which is
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obtained if u = x(t), v = x(t+1), and a = θ = 1 are substituted into (4). Next,

let us define a new variable R by R = v/(auθ) and assume that the conditional

distribution Q(R|u) does not depend on the value of u as long as u exceeds size
threshold ū; that is,

Q(R|u) = Q(R) for u > ū . (5)

In other words, Gibrat’s law holds only when u exceeds ū.

It can be shown that quasi-inversion symmetry (4) and Gibrat’s law with

the lower bound (5) lead to power laws for u and v:

P>(u) ∝ u−μu for u > ū , (6)

P>(v) ∝ v−μv for v > v̄ , (7)

where μu and μv represent the power-law exponents for u and v. More impor-

tantly, it can be shown that μu and μv are related through μu = θμv.

Let us give a sketch of how these results are obtained. On the one hand,

from the relation PJ (u,R) du dR = PJ (u, v) du dv, the following equations are

obtained:

PJ (u,R) = auθPJ (u, v) (8)

= R−1vPJ (u, v)

= R−1vPJ

µ³v
a

´1/θ
, auθ

¶
, (9)

where (4) is used to obtain (9). On the other hand, by exchanging variables

using v ↔ auθ, we can rewrite (8) as

PJ

µ³v
a

´1/θ
, R−1

¶
= vPJ

µ³v
a

´1/θ
, auθ

¶
. (10)

Combining (9) and (10) leads to

PJ (u,R) = R
−1PJ

µ³v
a

´1/θ
, R−1

¶
. (11)

From the definition of the conditional probability Q(R|u) = PJ(u,R)/P (u),
(11) is rewritten as

P (u)

P ((v/a)
1/θ
)
=
1

R

Q(R−1 | (v/a)1/θ)
Q(R | u) =

1

R

Q(R−1)
Q(R)

, (12)

where Gibrat’s law (5) is used to obtain (12). The final term of (12) is a function

only of R and it is denoted by G(R). Thus, we obtain

P (u) = G(R)P (R1/θu) . (13)
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We approximate the right-hand side of (13) for R around 1 (namely, R = 1 + ²

where ²¿ 1) to obtain a differential equation of the form

G0(1)θP (u) + uP 0(u) = 0 , (14)

where G0(·) is the derivative of G(·) with respect to R and P 0(·) is the derivative
of P (·) with respect to u. The unique solution to this differential equation is
given by

P (u) = CTu
−G0(1)θ . (15)

Note that, as shown by [27, 28], (15) continues to be a general solution to

(13) even if R deviates substantially from R = 1, as long as Q(R) satisfies

Q(R) = R−G
0(1)−1Q(R−1). This condition for Q(R) has been shown to be

satisfied for various economic data, including firm size variables and personal

income [27, 28].

Next, we characterize P (v). Using (15) and the relation P (u) du = P (v) dv,

we obtain

P (v) = P (u)
du

dv
=
CT a

G0(1)−1/θ

θ
v−G

0(1)+1/θ−1 . (16)

Eqs. (15) and (16) show that quasi-inversion symmetry and Gibrat’s law gen-

erate power-law distributions for u and v with different power-law exponents.

Moreover, by comparing (15) and (16) with (6) and (7), we see that the two

power-law exponents are related as follows:

μu = θμv . (17)

That this relationship holds in practice is shown by Refs. [11, 12] using land price

data. Specifically, investigating land price distributions in year t and year t+1,

Refs. [11, 12] shows that μx(t) = θμx(t+1) holds, where x(t) and x(t+1) are land

prices in year t and t+1, μx(t) and μx(t+1) are the estimated tail exponents for

the two distributions, and θ is the parameter estimated from inversion symmetry

for PJ (x(t), x(t+1)). Also note that a relationship between power-law exponents

that is similar to (17) has been derived by Ref. [38], although their approach

differs from ours in that they focus on the part of a firm size distribution that

is log-normally distributed rather than the power-law part of the distribution.

3. Example of Quasi-Inversion Symmetry

In this section, we examine empirically whether power laws are actually

generated from inversion symmetry and Gibrat’s law. The dataset we use is from

ORBIS, a database compiled by Bureau van Dijk [39] that contains information

on firms around the world. In this section, we use firm sales Y and tangible

fixed assets K to examine a two-variable system (K,Y ).

We start by showing that K and Y follow power-law distributions for values

exceeding certain size thresholds, which are given by K̄, Ȳ . That is,

P>(K) ∝ K−μK for K > K̄ , (18)

P>(Y ) ∝ Y −μY for Y > Ȳ , (19)
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Figure 1: Distributions of tangible fixed assets K for Japanese firms in 2004 to 2009. The

number of firms changes across years but on average is 601,211.

Figure 2: Distributions of sales Y for Japanese firms in 2000 to 2009. The number of firms

changes across years but on average is 399,982.
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Figure 3: Relationship between tangible fixed assets K and sales Y for Japanese firms in 2008.

The horizontal axis shows the values of K for the tail part of its distribution (i.e., the range

in which K follows a power-law distribution), while the vertical axis shows the values of Y .

The dots and the bars represent, respectively, the mean and the standard deviation of logY

for each bin of K, which is of the same size in log. We fit a line, log Y = θKY logK+log aKY ,

to the dots, which is indicated by the dashed line.
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Figs. 1 and 2 show the CDFs of K and Y for Japanese firms in various years. We

see that the K and Y for each year have a power-law tail for values exceeding

a certain size threshold. Next, we show that PJ(K,Y ) is invariant under the

exchange of variables,

PJ (K,Y ) = PJ

Ãµ
Y

aKY

¶1/θKY

, aKYK
θKY

!
, (20)

which is denoted by Y ↔ aKYK
θKY . Fig. 3 shows the relationship between K

and Y for Japanese firms in 2008. The dashed line represents the line log Y =

θKY logK+log aKY with respect to which quasi-inversion symmetry holds. This

line is estimated as follows.

Step 1: The range in which K follows a power-law distribution is identified

by the method proposed by Ref. [40], which is a modified version of the

method advocated by Ref. [41]. As shown in Figs. 1 and 2, the right-end

part of each distribution decays quicker than the rest of the distribution

due to the limited number of observations. Such a finite-size effect is not

present in small datasets, so it is not regarded as important in Ref. [41].

However, in large datasets, such as the one used in this paper, distributions

are seriously affected by the finite-size effect, so that a simple application

of the method proposed by Ref. [41] could lead to a failure to correctly

detect the range in which K follows a power-law distribution. To avoid

this, Ref. [40] proposes to “thin out” observations before applying the

procedure by Ref. [41]. We adopt this method to detect K̄. We employ

the same procedure for the distribution of Y to detect Ȳ .

Step 2: The power-law range of K is divided into bins which are of the same

size in log, and the geometric average of Y is calculated for the observations

belonging to each bin, which is shown by the round dots in Fig. 3. We then

run a least squares regression to fit the line log Y = θKY logK + log aKY
to the dots. A similar method was adopted in Refs. [18], [33]. Note that

we apply the least squares method not to individual observations but to

the dots so as to give an equal weight to the right and left ends of the

distribution. Finally, we conduct a Kolmogorov-Smirnov test to confirm

that (20) holds with respect to the estimated line.

Next, let us consider the ratio betweenK and Y , which is denoted by RKY =

Y/(aKYK
θKY ). Fig. 4 shows the PDF of RKY conditional on K, which is

denoted by Q(RKY | K). We see that the PDF of RKY does not depend on K,
when K exceeds the size threshold K̄. That is,

Q(RKY |K) = Q(RKY ) for K > K̄ . (21)

Finally, we check condition (17). We estimate μK/μY and θKY for twelve

countries. The result is shown in Fig. 5. We fit a line to the data and obtain

μK/(μY θKY ) = 0.94± 0.03, indicating that the data are almost consistent with
μK = θKY μY , although μK is slightly smaller than θKY μY .
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Figure 4: PDFs of rKY (≡ logRKY ) conditional on K. The range of K is divided into loga-

rithmically equal size bins, which are given by K ∈ £104+0.2(n−1), 104+0.2n¢ , n = 1, 2, · · · , 5.

Figure 5: Relationship between μK/μY and θKY in 2006 for twelve countries, namely Japan

(JP, the number of observations is 723,109), France (FR, 887,142), Spain (ES, 718,729), Italy

(IT, 611,988), Russian Federation (RU, 548,086), United Kingdom (GB, 342,370), Portugal

(PT, 280,941), Korea (KR, 134,450), China (CN, 247,318), Ukraine (UA, 252,144), Norway

(NO, 162,983) and Germany (DE, 213,017). The dashed line represents μK = θKY μY .
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Figure 6: Relationship between θKL and θKY θY L for eleven countries in 2008. The dashed

line represents θKL = θKY θY L.

4. Inversion Symmetry in Three-Dimensional Space

In the previous section, we observed inversion symmetry in the (logK, log Y )

plane and showed that inversion symmetry and Gibrat’s law lead to power

laws for the distributions of K and Y . We apply the same analysis to the

other sets of variables, that is (log Y, logL) and (logK, logL), to find that the

three θ’s estimated by regressions (i.e., θKL, θKY , and θY L) are related to each

other through θKL ' θKY θY L, as shown in Fig. 6. This result suggests the

presence of inversion symmetry and Gibrat’s law in the three dimensional space

(logK, logL, log Y ). In this section, we extend the discussion in Sec. 2 to three

dimensional space.

Consider a plane in the three dimensional space (log u1, log u2, log v), which

is given by

log v = θ1 log u1 + θ2 log u2 + logA, (22)

and assume that the joint PDF of the three variables, PJ(u1, u2, v), is invertible

in the sense that v ↔ Au1
θ1u2

θ2 . Specifically, inversion symmetry in the three

dimensional space is defined as

PJ (u1, u2, v) = PJ

Ãµ
v

Au2θ2

¶1/θ1
,

µ
v

Au1θ1

¶1/θ2
, Au1

θ1u2
θ2

!
. (23)

We also assume a three-dimensional version of Gibrat’s law,

Q(R|u1, u2) = Q(R) for u1 > ū1 and u2 > ū2, (24)

where ū1 and ū2 represent the size thresholds of u1 and u2, R is defined by

R = v/(Au1
θ1u2

θ2), and Q(R|u1, u2) = PJ(u1, u2, R)/PJ (u1, u2). Note that R
is closely related to what economists refer to as total factor productivity.
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From (23) and (24), we obtain

PJ(u1, u2) = G(R)PJ (R
1/θ1u1, R

1/θ2u2), (25)

which corresponds to (13) in Sec. 2. We expand (25) around R = 1 (namely, R =

1+ ² where ²¿ 1) to obtain a differential equation. Under the assumption that

u1 and u2 are mutually independent, the solution to the differential equation is

given by

PJ (u1, u2) = CTu1
−μ1−1u2−μ2−1 , (26)

where μ1 and μ2 are positive parameters satisfying
μ1+1
θ1

+ μ2+1
θ2

= G0(1). Note
that μ1 and μ2 are the power-law exponents associated with u1 and u2.

Turning to the PDF of v, the result obtained by Refs. [35, 36] implies that,

given the assumption that u1 and u2 are mutually independent, the product

of u1 and u2 also follows a power-law distribution, with its exponent given by

min{μ1/θ1,μ2/θ2}. Therefore, P (v) is given by

P (v) ∝ v−μv−1 , (27)

where

μv = min{μ1/θ1,μ2/θ2} . (28)

Note that (28) corresponds to (17) in the two dimensional case.

We now proceed to the empirical investigation of inversion symmetry in three

dimensional space. We first eliminate the high correlation between logK and

logL by converting (logK, logL) into (logZ1, logZ2). The new variables logZ1
and logZ2 are defined as

logZ1 =
logL√
2σlogL

+
logK√
2σlogK

; logZ2 =
logL√
2σlogL

− logK√
2σlogK

, (29)

where σlogK and σlogL are the standard deviations of logK and logL, respec-

tively. We have confirmed that Z1 and Z2 follow power-law distributions for

Z1 > Z̄1 and Z2 > Z̄2. Note that, by construction, logZ1 and logZ2 are

uncorrelated, but this does not necessarily imply that they are mutually inde-

pendent. To see whether they are mutually independent or not, we conduct a

Kolmogorov-Smirnov test as follows. We first divide the range of Z1 into 15 bins

of logarithmically equal size, which are given by Z1 ∈ [101+0.2(n−1), 101+0.2n)
for n = 1, . . . , 15, as illustrated in Fig. 7. The distributions of Z2 conditional

on Z1, that is, P (Z2 | Z1 ∈ [101+0.2(n−1), 101+0.2n)), are shown in Fig. 8. The
figure shows that the PDFs for different values of n are almost identical, which

is confirmed by the Kolmogorov-Smirnov tests indicating that the null hypoth-

esis that, for any pair of the 15 distributions, the two distributions are identical

cannot be rejected at the 5 percent significance level.

We then fit a plane, log Y = θZ1Y logZ1 + θZ2Y logZ2 + logA, to the ob-

servations for Z1 > Z̄1 and Z2 > Z̄2 to obtain estimates for θZ1Y and θZ2Y .

For Japanese firms in 2008, the estimate of θZ1Y turns out to be 0.38 with a

standard error of 0.005, while the estimate of θZ2Y is 0.08 with a standard error

11



Figure 7: Scatter plot of Z1 and Z2 for firms with K > K̄ and L > L̄. The plot are for

Japanese firms in 2008. The thin vertical lines indicate the bins of Z1, which are given by

Z1 ∈ [101+0.2(n−1), 101+0.2n) for n = 1, . . . , 15.
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Figure 8: PDFs of Z2 conditional on Z1, which are given by P (Z2 | Z1 ∈ [101+0.2(n−1),
101+0.2n)) for n = 1, . . . , 15.
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of 0.01. We have confirmed the presence of inversion symmetry with respect

to this estimated line (i.e., Y ↔ AZ1
θZ1Y Z2

θZ2Y ) as well as the presence of

Gibrat’s law.

Next, we check whether condition (28) holds in the data. For Japanese

firms in 2008, the estimate of the power-law exponent associated with Z1,

which is denoted by μZ1 , is 0.38 with a standard error of 0.01, while the es-

timate of the power-law exponent for Z2, denoted by μZ2 , is 1.16 with a stan-

dard error of 0.01. Therefore, μZ1/θZ1Y is 0.99 and μZ2/θZ2Y is 14.5, so that

min{μZ1/θZ1Y ,μZ2/θZ2Y } = 0.99 ± 0.03. In other words, the theoretical pre-
diction is that the power-law exponent associated with Y should be 0.99. In

fact, the estimate of the power-law exponent for Y turns out to be 0.95 with a

standard error of 0.01, which is close to the theoretical prediction. Furthermore,

we find inversion symmetry between logZ1 and log Y in two dimensional space,

as shown in Fig. 9. It is important to note that the slope of the fitted line in

Fig. 9 is 0.38 ± 0.003, which is quite close to the estimate of θZ1Y obtained in
three dimensional space. We also confirm the presence of Gibrat’s law in the

(logZ1, log Y ) space, as shown in Fig. 10. These two results indicate that the

presence of inversion symmetry and Gibrat’s law in two dimensional space is

just a reflection of inversion symmetry and Gibrat’s law in three dimensional

space, as predicted by the theoretical considerations above.

The inversion symmetry in three dimensional space discussed in this section

also has a meaning in terms of economics. To show this, we first note that

inversion symmetry in the (logZ1, logZ2, log Y ) space can be converted into

inversion symmetry in the (logK, logL, log Y ) space, with the axis of inversion

symmetry given by

log Y = α logK + β logL+ logA , (30)

where α and β are defined by

α =
θZ1Y − θZ2Y√

2σlogK
; β =

θZ1Y + θZ2Y√
2σlogL

. (31)

We denote this inversion symmetry by Y ↔ AKαLβ . Eq. (30) is referred to

as the Cobb-Douglas production function by economists and has been widely

used in economics since it was first introduced in 1928 by Ref. [37]. Specifi-

cally, economists have been using the idea of production functions to describe

the nonlinear relationship between output and inputs. At the firm-level, for

example, the output of a firm, Y (e.g., measured in terms of sales), is a positive

function of, e.g., the number of people working for the firm, L, and the number

of machines it uses, K, as well as the productivity of the firm, A that is, the

efficiency with which these inputs are used. This relationship is referred to as a

production function, and the most widely used functional form for production

functions is the Cobb-Douglas form. Although there are a number of studies by

economists, such as [42]—[44], seeking to provide a theoretical foundation for the

Cobb-Douglas functional form, no consensus has yet been found. The discus-

sion in this section provides a new theoretical foundation for the Cobb-Douglas

form.
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Figure 9: Relationship between Z1 and Y for Japanese firms in 2008. The dots and the bars

represent, respectively, the mean and the standard deviation of log Y for each bin of Z1, which

is of the same size in log. We fit a line, log Y = θZ1Y logZ1 + log a1, to the data, which is

indicated by the dashed line.
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Figure 10: PDFs of r1 conditional on Z1, where r1 is defined as r1 ≡ log[Y/(a1Z1
θZ1Y )].

The range of Z1 is divided into bins of the same size in log, which are given by Z1 ∈£
100.5(n−1), 100.5n

¢
, n = 1, 2, · · · , 5.
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5. Conclusion

In this paper, we discussed the mechanism through which inversion sym-

metry and Gibrat’s law generate power-law distributions with different tail ex-

ponents. Using a dataset containing firm size variables for firms in various

countries, that is, tangible fixed assets K, the number of workers L, and sales

Y , we confirmed that they have power-law tails with different exponents. We

also confirmed that inversion symmetry and Gibrat’s law hold, and that the

power law exponents for K, L, and Y satisfy the relationship implied by theory.

Based on these findings, we argue that there exists a plane in the three di-

mensional space (logK, logL, log Y ), with respect to which the joint probability

density function for the three variables is invariant under the exchange of vari-

ables. We provide empirical evidence that this plane fits the data well and argue

that the plane can be interpreted as the Cobb-Douglas production function, a

type of function which has been extensively used in various areas of economics.

In this sense, this paper provides a theoretical foundation for the Cobb-Douglas

functional form.

The analysis in this paper provides suggestions for new avenues of research

on Cobb-Douglas production functions. As mentioned, the Cobb-Douglas form

is given by Y = AKαLβ , where A represents the level of productivity of a

firm, and α and β are positive parameters. The first avenue for further research

concerns the values of α and β. In economics, it is important to know whether

the sum of these two parameters equals unity or not. For example, Ref. [45]

found that the sum of the two is close to unity in some countries but less than

unity in others. The second potential research avenue concerns where the tail

exponent of Y comes from. The Cobb-Douglas form shown above implies that

it should come from the exponent of K, the exponent of L, or the exponent of

A. Business persons often argue that the key to achieving high sales growth

is high productivity growth, implying that the upper tail of Y should stem

from the upper tail of A. However, Ref. [46] has shown that the power-law

exponent of the productivity distribution in a country tends to be greater than

the power law exponent of the sales distribution in that country, indicating that

the upper tail of the productivity distribution is less heavy than that of the

sales distribution. In a related context, Refs. [47, 48] examined the distribution

of labour productivity for Japanese firms. Investigating in more detail how

the fat tail of sales distributions is related to the tails of the distributions of

productivity and other firm variables is a task we hope to address in the future.
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