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We start from Gibrat’s law and quasi-inversion symmetry for three firm size variables (i.e.,

tangible fixed assetsK, number of employeesL, and salesY) and derive a partial differential

equation to be satisfied by the joint probability density function ofK andL. We then transform

K andL, which are correlated, into two independent variables by applying surface openness

used in geomorphology and provide an analytical solution to the partial differential equation.

Using worldwide data on the firm size variables for companies, we confirm that the estimates

on the power-law exponents ofK, L, andY satisfy a relationship implied by the theory.

KEYWORDS: econophysics, power law, Gibrat’s law

1. Introduction

In econophysics, it is well-known that the cumulative distribution functions (CDFs) of

capital K, labor L, and productionY of firms obey power laws in large scales that exceed

certain size thresholds, which are given byK0, L0, andY0:

P>(K) ∝ K−µK for K > K0 , (1)

P>(L) ∝ L−µL for L > L0 , (2)

P>(Y) ∝ Y−µY for Y > Y0 . (3)

∗E-mail: ishikawa@kanazawa-gu.ac.jp
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These are called Pareto’s law,1) and positive power-law indicesµK, µL, andµY are called

Pareto’s indices. In condensed matter physics, various power laws are observed in physical

quantities near the critical points of phase transitions. It is fascinating that power laws are

also observed in social quantities.2–25) On the one hand, the renormalization group approach

has been employed to confirm power laws observed in physical quantities as critical phenom-

ena of phase transitions.26) Various models have also been proposed to explain power laws

observed in social phenomena (see, e.g., Refs.22–25)).

Under this circumstance, without any model, Fujiwara et al. showed that power laws

arise as a result of Gibrat’s law27,28) and inversion symmetry, both of which are observed

between variables in some year and the same variables the next year: (KT ,KT+1), (LT , LT+1),

(YT ,YT+1).29,30) By extending this discussion, we reported that power laws with different in-

dices are similarly obtained from Gibrat’s law and quasi-inversion symmetry observed be-

tween variables in some year and different variables the same year: (K,Y), (L,Y), (K, L).31–33)

By extending the discussion on two variables to three variables, we derived the following

Cobb-Douglas production function34) from Gibrat’s law and quasi-inversion symmetry for

three variables:

Y = AKαLβ . (4)

In economics, the product of firmY is determined by its capitalK and its laborL. This relation

is called the production function, and the Cobb-Douglas form (4) is one of the most useful

functions. Here,α andβ are positive parameters that are constant in the analyzed firms. They

are called the output elasticities of capital and labor, respectively.A in Eq. (4) is called the

total factor productivity and represents a firm’s technology that cannot be estimated by capital

K or laborL. The Cobb-Douglas production function has been extensively used in various

areas of economics.

Here, quasi-inverse symmetry and Gibrat’s law are represented using joint probability

density function (PDF)PKLY(K, L,Y) and conditional PDFQ(R|K, L) as follows:32,33)

PKLY(K, L,Y)dKdLdY

= PKLY

(( Y
aLβ

)1/α

,
( Y
aKα

)1/β

,aKαLβ
)

d

(( Y
aLβ

)1/α)
d

(( Y
aKα

)1/β)
d
(
aKαLβ

)
, (5)

Q(R|K, L) = Q(R) , (6)

whereR is the rate of three variablesR = Y/aKαLβ anda is a constant parameter. Quasi-

inverse symmetry is a invariance of the system under the exchange of variablesaKαLβ ↔ Y.
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The point of Eq. (5) is that the functional form of right-hand sidePKLY is not different from

the functional form of left-hand side. At the same time, infinitesimal volume elements, which

were not taken into account in Ref.,33) must be associated with the PDFs.

In previous work, we clarified that Gibrat’s law and quasi-inversion symmetry in three

variables (K, L,Y) is the theoretical explanation why (K, L,Y) data are well approximated by

the Cobb-Douglas production function (4). In this discussion, one issue is the identification

of the functional form of joint PDFPKL(K, L), which leads to power laws (1)–(3). To con-

firm the analytical result using empirical data, a transformation must be found that absolutely

eliminates the correlation betweenK andL. In previous works, the transformation was ap-

proximately estimated using the least square method applied to the mean values of the data

that were divided into logarithmically equal sized bins.35) However, the resulting power-law

indices did not follow the analytical results.

In this paper, using surface openness,36–38) which is used in landform classification, we

determined the accurate transformation from a geomorphologic point of view and found that

the estimated power-law indices numerically do follow the theoretical relations among power-

law indices that were analytically obtained fromPKL(K, L).

The rest of this paper is organized as follows. In Section 2, we determine the functional

form of joint PDFPKL(K, L) from quasi-inversion symmetry and Gibrat’s law in three vari-

ables (K, L,Y), both of which will be confirmed in Section 3. At the same time, power laws

(1)–(3) are directly derived fromPKL(K, L) and relations among the power-law indices are

provided. In Section 3, we observe power laws, quasi-inversion symmetry, and Gibrat’s law

of (K, L,Y) using ORBIS, a commercially available firm-level worldwide data set compiled

by Bureau van Dijk.39) Next, we confirm our analytical results in Section 2. What is important

is the accurate determination of the transformation that completely eliminates the correlation

betweenK andL with surface openness in landform classification. We numerically show that

the new transformed variables are not only uncorrelated but also independent in the power-

law region. Finally, in Section 4, we summarize our findings and discuss some additional

issues.

2. Derivation of Power Laws from Quasi-inverse Symmetry and Gibrat’s Law in Three

Variables

In this section, we review previous works31–33) and analytically discuss the identification

of the functional form ofPKL(K, L). As a result, the power laws of three valuables (1)-(3)

are directly derived from quasi-inverse symmetry and Gibrat’s law in three variables through

3/21



J. Phys. Soc. Jpn. DRAFT

PKL(K, L) . At the same time, the three indices,µK, µL, andµY, are related to each other.

Quasi-inverse symmetry is also represented by using joint PDFPKLR(K, L,R) as follows:

PKLR(K, L,R)dKdLdR= PKLR

(
R1/αK,R1/βL,R−1

)
d
(
R1/αK

)
d
(
R1/βL

)
d
(
R−1

)
. (7)

We can rewrite Eq. (7) as

PKLR(K, L,R) = R1/α+1/β−2PKLR

(
R1/αK,R1/βL, R−1

)
. (8)

From the definition of conditional PDFQ(R|K, L) = PKLR(K, L,R)/PKL(K, L), Eq. (8) is

rewritten:

PKL(K, L)
PKL

(
R1/αK,R1/βL

) = R1/α+1/β−2
Q

(
R−1 | R1/αK, R1/βL

)
Q(R | K, L)

= R1/α+1/β−2 Q(R−1)
Q(R)

. (9)

Here, Gibrat’s law (6) is used. The last term of Eq. (9) is only a function ofR and is denoted

by G(R). Therefore, we obtain

PKL(K, L) = G(R)PKL(R1/αK, R1/βL) . (10)

The definition ofG(R) is different from the definition in Ref.33) Because infinitesimal volume

elements in Eq. (7) or (5) were not taken into account in Ref.33)

By expanding the right-hand side of Eq. (10) forR around 1 (namely,R = 1 + ϵ where

ϵ ≪ 1) we obtain a differential equation:

G′(1)PKL(K, L) +
K
α

∂

∂K
PKL(K, L) +

L
β

∂

∂L
PKL(K, L) = 0 . (11)

Here,G′(·) is a derivative ofG(·) with respect toR . The incorrect description ofG(R) in

Ref.33) has been absorbed in the difference of the difinition ofG(R), then the resulting differ-

ential equation is the same form in Ref.33)

We show in the next section that variablesK strongly correlate withL, and therefore, they

are not independent. To eliminate the correlation, we transform variables (K, L) to (Z1,Z2):

log10 Z1 = log10 k+ log10 l , log10 Z2 = − log10 k+ log10 l , (12)

with

log10 k =
log10 K −mK

σK
, log10 l =

log10 L −mL

σL
. (13)

Next we introduce parametersmK, mL, σK, andσL. We divide the power-law region ofK and

L into logarithmically equal sized cells and consider the topographic map by regarding the

logarithm of the number of firms in a cell as its altitude. ParametersmK andmL are the mean

values of the central coordinates of the cells that constitute the landform’s ridge. Parameters

σK andσL are
√

2 times of the standard deviations. In the next section, we describe them in
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detail using empirical data.

No correlation betweenZ1 andZ2 does not necessarily mean that they are independent

variables. However, in the power-law region ofK and L, Z1 andZ2 are not only uncorre-

lated but also independent. This is numerically confirmed using empirical data. We will also

describe them in detail in the next section.

The independence of the variablesZ1 andZ2, which will be numerically confirmed in

the next section, can be analytically explained as follows. Two variables (K, L), the coordi-

nate system of which has quasi-inverse symmetryaKLKθKL ↔ L , are transformed into two

variables (k, l), the coordinate system of which has inverse symmetryk ↔ l . Note that the

definitions ofk and l are given in Eq. (13), and thataKL andθKL are constant parameters.

Inverse symmetry is a invariance under the exchange of variables with respect to the line with

its slop beingπ/4 . Since Eq. (12) rotates the coordinate system by−π/4 , the new variables

(Z1,Z2) must be independent. Also, the system (Z1,Z2) hasZ2↔ 1/Z2 symmetry.

By setting

θ1 =
1
2

(σKα + σLβ) , (14)

θ2 =
1
2

(−σKα + σLβ) , (15)

KαLβ is reduced toZ1
θ1Z2

θ2 and quasi-inverse symmetry is rewritten asY↔ a′Z1
θ1Z2

θ2 . Here,

a′(= 10αmK+βmLa) is a constant parameter. As a result, quasi-inverse symmetry and Gibrat’s

law are similarly observed in the (Z1,Z2,Y) coordinates. Therefore, using a similar discussion,

the following partial differential equations are obtained:

G+
′(1) PZ1Z2(Z1,Z2) +

Z1

θ1

∂

∂Z1
PZ1Z2(Z1,Z2) +

Z2

θ2

∂

∂Z2
PZ1Z2(Z1,Z2) = 0 , (16)

G−
′(1) PZ1Z2(Z1,Z2

−1) +
Z1

θ1

∂

∂Z1
PZ1Z2(Z1,Z2

−1) − Z2
−1

θ2

∂

∂Z2
−1

PZ1Z2(Z1,Z2
−1) = 0 , (17)

whereG±(R) = R1/θ1±1/θ2−2Q(R−1)/Q(R) andR = Y/a′Z1
θ1Z2

θ2 . Equation (17) is obtained

from Z2↔ 1/Z2 symmetry.

As mentioned above,Z1 andZ2 are independent variables. Therefore, with the variable

separation method, solutionPZ1Z2(Z1,Z2) of Eqs. (16) and (17) is uniquely determined to be

the product of the power-law functions ofZ1 andZ2 . This will be numerically verified in the

next section. What is important here is that the power-law index ofZ2 for Z2 > 1 is different

from the index ofZ2 for Z2 < 1 . Therefore, the analytical solution is expressed as follows:

PZ1Z2(Z1,Z2) = C Z1
−µ1−1Z2

−µ2−1 for log10 Z2 > 0 , (18)
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PZ1Z2(Z1,Z2) = C Z1
−µ1−1Z2

+µ2−1 for log10 Z2 < 0 , (19)

with the conditions of variable separationµ1+1
θ1
+

µ2±1
θ2
= G±′(1) . This solution satisfies

Z2 ↔ 1/Z2 symmetry, namely,PZ1Z2(Z1,Z2)dZ1dZ2 = PZ1Z2(Z1,Z2
−1)dZ1d(Z2

−1) . In Ref.,33)

Eq. (18), which is valid for the case of log10 Z2 > 0, was only presented, becauseZ2 ↔ 1/Z2

symmetry was not discussed. In order to consider the case of log10 Z2 < 0, PZ1Z2 must be

written by Eq. (19). This was suggested in Figs. 7 and 8 in Ref.33)

Note that Eqs. (18) and (19) continue to be a general solution toPZ1Z2(Z1,Z2) =

G(R)PZ1Z2(R
1/θ1Z1,R1/θ2Z2), even ifR deviates substantially fromR = 1, as long asQ(R) sat-

isfiesQ(R) = R−G±′(1)+1/θ1±1/θ2−2Q(R−1) = R−µ1/θ1−µ2/θ2−2Q(R−1) . Using the transformation of

integration measuredZ1dZ2 =| ∂(Z1,Z2)
∂(K,L) | dKdL= 2

σKσL
K−1L

2
σL
−1dKdL , PKL(K, L) is expressed

as follows:

PKL(K, L) = C+ Kθ+K−1L−θ
+
L−1 for l > k , (20)

PKL(K, L) = C− K−θ
−
K−1Lθ

−
L−1 for l < k . (21)

Here,

θ+K =
µ2 − µ1

σK
, θ+L =

µ2 + µ1

σL
, (22)

θ−K =
µ2 + µ1

σK
, θ−L =

µ2 − µ1

σL
. (23)

Note thatPKL(K, L) is also the product of the power-law functions ofK andL, but variables

K andL are not independent because the power-law indices forl > k are different from the

indices for the case thatl < k .

By integratingPKL(K, L) by L or K , from the leading order terms, power-law functions

K andL are obtained:

P(K) =
∫ ∞

0
dLPKL(K, L) ∼

(
C+aKL

−θ+L

θ+L
+

C−aKL
θ−L

θ−L

)
K−2

µ1
σK
−1
, (24)

P(L) =
∫ ∞

0
dKPKL(K, L) ∼

(
C+aLK

θ+K

θ+K
+

C−aLK
−θ−K

θ−K

)
L−2

µ1
σL
−1
, (25)

where log10 aKL = mL −mKσL/σK, log10 aLK = mK −mLσK/σL . By comparing Eq. (1) with

Eq. (24) and Eq. (2) with Eq. (25), the relations among power-law indices are found:

µK = 2
µ1

σK
, µL = 2

µ1

σL
. (26)

At the same time, from the result in Refs.40,41) , we conclude the following. Under quasi-

inverse symmetryY↔ a′Z1
θ1Z2

θ2 , Eqs. (18) and (19) imply thatY obeys power law (3) and
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indexµY is identified as31,33)

µY = min

{
µ1

θ1
,
µ2

θ2

}
. (27)

From the data analyses of various countries from 2004 to 2009, which are discussed in the

next section, the relations among power-law indices are observed asµ1/θ1 < µ2/θ2 , Eq. (27)

is reduced to

µY =
µ1

θ1
. (28)

Furthermore, by writingA = R a, we can regard the definition ofR as the Cobb-Douglas

production function (4). In this case, Gibrat’s law (6) guarantees that the distribution of total

factor productivityA does not depend onK andL . Although we have made several correc-

tions on the formulation in Ref.,33) the results there remain intact.

3. Data Analyses

In this section, an empirical analysis is carried out using the ORBIS database from 2004

to 2009 provided by Bureau van Dijk.39) First, we observe power laws, quasi-inversion sym-

metry, and Gibrat’s law in three variables (K, L,Y). After that, we confirm the analytical

discussion of the previous section using tangible fixed assetsK, number of employeesL, and

firm salesY.

3.1 Power Laws

Figures 1-3 show that the CDFs ofK, L, andY of Japanese firms in 2004 to 2009 obey

power laws (1)-(3) in large scales that exceed certain size thresholdsK0, L0, and Y0. On

the one hand, we determine the lower bounds of power-law rangesK0, L0, andY0 using the

method in Ref.42) , which is a modified version of the method in Ref.43) . In this algorithm, the

boundary between the power-law range and the log-normal range is detected with a statistical

test.

The upper bounds of the power-law ranges are set at the top 0.1% of the data. The data

in the power-law range between the upper and lower bounds are divided into logarithmically

equal sized bins, and the power-law indices are estimated using the least square method,

which is applied to the collective data in the bins.

3.2 Quasi-inversion Symmetry

Let us observe quasi-inversion symmetryY ↔ aKαLβ among three variables (K, L,Y)

in the power-law region determined in 3.1. In this paper, this is called the quasi-inversion
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Fig. 1. Distribution of tangible fixed assetsK for Japanese firms from 2004 to 2009. Number of firms changes

across years but averages 148,186.
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>
(L

)

Number	of	Employees	L

2004
2005
2006
2007
2008
2009

Fig. 2. Distribution of number of employeesL for Japanese firms from 2004 to 2009. Number of firms

changes across years but averages 155,465.

symmetry. Here,a, α, andβ are the constant parameters that are identified as follows.

Figure 4 depicts a scatter plot betweenK and L of Japanese firms in 2008. As shown

in Fig. 4, since we divide the power-law ranges ofK andL into logarithmically equal sized

bins, the power-law region is divided into cells enclosed by dashed lines. In each cell, we

calculated the logarithmic mean ofY. By applying a least square method to the mean values

of cells, we obtained a regression plane surface. By identifying the plane as the plane of the

quasi-inverse symmetry, namely, log10 Y = α log10 K + β log10 L + log10 a, valuesa, α, andβ

are estimated from the intercept and two components of the normal vector. For Japanese firms
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Fig. 3. Distribution of salesY for Japanese firms from 2004 to 2009. Number of firms changes across years

but averages 601,211.

in 2008, the values were calculated asa = 68.3± 1.1,α = 0.36± 0.02, andβ = 0.70± 0.02.

With a, α, andβ determined above, consider a scatter plot betweenY andY′(≡ aKαLβ)

(see Fig. 5). Quasi-inverse symmetryY ↔ Y′ is observed by conducting a Kolmogorov-

Smirnov test as follows. We first divide the range ofY and Y′ into 18 bins of logarith-

mically equal size, given byY,Y′ ∈
[
102.4+0.2(n−1),104+0.2n

)
,n = 1,2, · · · ,18, as illus-

trated in Fig. 5. The null hypothesis, that two distributionsP(
[
102.4+0.2(n−1),104+0.2n

)
,Y′) and

P(Y,
[
102.4+0.2(n−1),104+0.2n

)
) are identical, cannot be rejected at the 5% significance level in

the power-law range (n ≥ 10 in Fig. 6).

Consequently, quasi-inverse symmetryY ↔ aKαLβ
(
K ↔ (Y/aLβ)1/α, L↔ (Y/aKα)1/β

)
is numerically confirmed in three valuables (K, L,Y) and is expressed using joint PDF

PKLY(K, L,Y) as Eq. (5).

3.3 Gibrat’s Law

We define the rate of three valuablesR = Y/aKαLβ . The property, under which condi-

tional PDFQ(R|K, L) does not depend onK andL, is called Gibrat’s law: Eq. (6). Figure 7

shows conditional PDFsQ(R|K, L) of six blocks, which contain more than 50 data points

(K, L), out of 25 blocks in Fig. 4. The difference of the blocks corresponds to the differ-

ence of (K, L) . From Fig. 7, we observe that PDFsQ(R|K, L) are identical. Therefore, in the

power-law region, we confirmed Gibrat’s law.
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Fig. 4. Scatter plot betweenK (in thousands of US dollars) andL of Japanese firms in 2008. Amount of data

is 176,980. As an example, power-law ranges ofK andL are divided into 5 logarithmically equal sized bins,

and the power-law region is divided into 25 cells. Amount of data in the power-law region is 26,286.

Fig. 5. Scatter plot betweenY andY′(≡ aKαLβ) of Japanese firms in 2008. Dashed lines indicate bins ofY

andY′, given byY,Y′ ∈
[
102.4+0.2(n−1),104+0.2n

)
,n = 1,2, · · · ,18 , respectively.

3.4 Ridge of KL Plane

K andL data points are scattered in theKL plane (see Fig. 4). To clearly comprehend the

density, we divided it into logarithmically equal sized cells and expressed the amount of data

points in the cells in the light and the shade (see Fig. 8). Consider the logarithm of a cell’s

density as its height. Then the ridge is observed from the upper right to the lower left in the

10/21
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Fig. 6. Null hypothesis that two distributionsP(
[
102.4+0.2(n−1),104+0.2n

)
,Y′) andP(Y,

[
102.4+0.2(n−1),104+0.2n

)
)

(n = 1,2, · · · ,18) are identical, cannot be rejected at the 5% significance level in the power-law range (n ≥ 10).

Vertical lines indicate lower bounds ofY andY′ .

10−4 10−2 100 102 104

10
−4

10
−2

10
0

block 1
block 2
block 6
block 7
block 12
block 13

R

Q
(R

)

Fig. 7. Conditional PDFsQ(R|K, L) of six blocks that contain more than 50 data points (K, L) out of 25 blocks

in Fig. 4.

KL plane. As the steepest-ascent line in the profit space, a ridge is discussed in Ref.44) . In

this paper, we determine the cells that constitute the ridge using the surface openness defined

as follows.36–38)

Figure 9 depicts the grid linked by the center points of the cells. From grid pointA,
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we counterclockwisely represent each azimuth asD = 1,2, · · · ,8 . As shown in Fig. 10,

the minimum zenith and nadir angles at grid pointA within distanceL in azimuthD are

represented byDϕL andDψL . Positive opennessΦL is defined by the mean value ofDϕL along

the eight azimuth, and negative opennessΨL is the corresponding mean ofDψL . The surface

openness is defined by the difference:

ΦL − ΨL =
1
8

8∑
D=1

DϕL −
1
8

8∑
D=1

DψL . (29)

The surface openness takes a negative value at the depressions and the valleys, zero at the

level surface, the saddle point, and the uniform slope, and positive values at the ridge and the

summit. In this analysis, by settingL = 10, we estimate the surface openness for each cell

and extract the cells of the opennesses that exceed 0.8 . In Fig. 8, the cells in the power-law

region are expressed by black dots.

Fig. 8. To clearly comprehend the density of Fig. 4, we divide theKL plane into logarithmically equal sized

cells and express the number of data points in them in light and shade. Broken lines represent upper and lower

bounds of power-law ranges ofK andL .

3.5 Independence of Z1 and Z2 and the Distributions

The black dots in Fig. 8 are the centers of cells (log10 Ki , log10 Li) that constitute the ridge

in the power-law region of theKL plane (i = 1,2, · · · ,N) . Here,N is number of cells which

constitute the ridge. We signify the means and the
√

2 times of the standard deviations as
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Fig. 9. Grid linked by center points of cells. From a grid point, we counterclockwisely represent each azimuth

asD = 1,2, · · · ,8 .

Fig. 10. Dots represent height of cells within distanceL in azimuthD . From grid pointA within distanceL,

we estimate zenith angles and denote the minimum asDϕL . Similarly, the minimum nadir angle is expressed by

DψL .

(mK ,mL) and (σK, σL), respectively as follows:

mK =
1
N

N∑
i=1

log10 Ki , mL =
1
N

N∑
i=1

log10 Li , (30)

σK =

√√
2
N

N∑
i=1

(
log10 Ki −mK

)2 , σL =

√√
2
N

N∑
i=1

(
log10 Li −mL

)2 . (31)

In Fig. 8,N = 39,mK = 4.87,mL = 2.78,σK = 1.10, andσL = 1.05 . Using the parameters,

Eq. (12) transforms all data (log10 K, log10 L) into (log10 Z1, log10 Z2) . Figure 11 shows the
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scatter plots betweenZ1 andZ2 .

VariablesZ1 andZ2, which were obtained by the transformation (12), are not only uncor-

related but also independent. To confirm the independence betweenZ1 andZ2, we divide the

range ofZ1 into 15 logarithmically equal sized bins:Z1 ∈ [101+0.2(n−1),101+0.2n) (n = 1, . . . , 15)

as shown in Fig. 11. Conditional PDFsPZ2(Z2 | Z1 ∈ [10−1+0.2(n−1),10−1+0.2n)) are depicted in

Fig. 12. The distributions for the different values ofn are almost identical. In fact, using the

Kolmogorov-Smirnov tests, with the null hypothesis that, for any pair of 15 distributions, two

distributions are identical cannot be rejected at the 5% significance level.PZ2(Z2|Z1) = PZ2(Z2)

is equivalent withPZ1Z2(Z1,Z2) = PZ1(Z1)PZ2(Z2) , and then the independence betweenZ1 and

Z2 is confirmed numerically. At the same time, from Fig. 12, we also confirmZ2 ↔ 1/Z2

symmetry.

Fig. 11. Scatter plots betweenZ1 andZ2 are transformed fromK and L of Japanese firms in 2008. Thick

vertical lines indicate upper and lower bounds of power-law range ofZ1 . Thin vertical lines indicate bins ofZ1,

given byZ1 ∈ [10−1+0.2(n−1),10−1+0.2n) (n = 1, . . . ,15) . Rhombus indicates corresponding power-law region of

K andL .

3.6 Consistency of Power-law Indices

When variablesZ1 andZ2 are independent, the solution of partial differential Eqs. (16)

and (17) is uniquely determined to be the product of the power-law functions ofZ1 andZ2 .

Figure 13 shows the CDF ofZ1, which is the numericalZ2 integration of the scatter plots

betweenZ1 andZ2 . In the figure, the power law ofZ1 is observed in a range that corresponds

to the power-law region ofK andL .
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Fig. 12. Conditional PDFsPZ2(Z2 | Z1 ∈ [101+0.2(n−1),101+0.2n)) (n = 1, . . . , 15)

Figures 14 and 15 depict the CDFs ofZ2 and 1/Z2, which are the numericalZ1 integrations

of the scatter plots betweenZ1 andZ2 . In the figures, the power laws ofZ2 and 1/Z2 are

observed in theZ2 > 1 andZ2 < 1 ranges that correspond to the power-law region ofK and

L, respectively. These features did not change in different years or in other countries.

From these observations, the power laws, which are the solution of Eqs. (16) and (17),

are represented as Eqs. (18) and (19). For Japanese firms in 2008, the parameters in Eq. (27)

are estimated asµ1 = 0.463± 0.001,µ2 = 1.22± 0.01,µ2
′ = 1.19± 0.02,θ1 = 0.569± 0.018,

andθ2 = 0.171±0.018 . Here,µ2
′ is an estimate from 1/Z2 distribution. In this case,G+′(1) =

15.6± 1.68,G−′(1) = 3.68± 0.35, andµ1/θ1 + µ2/θ2 = 7.95± 0.93 . Using these parameters

Eq. (27) is reduced to Eq. (28), and this feature also did not change in different years or in

other countries.

Finally, let us numerically confirm the validity of Eqs. (26) and (28). Figures 16–18 rep-

resent the relations betweenµK and 2µ1/σK, µL and 2µ1/σK, µY andµ1/θ1 for ten countries

from 2004 to 2009, except for years when the amount of data was not sufficient. Figures 16

and 17 show the validity of Eq. (26), and we also confirmed the validity of Eq. (28) from

Fig. 18.

4. Conclusion

We directly observed quasi-inverse symmetry and Gibrat’s law of three variables: tangible

fixed assetsK, number of employeesL, and salesY of firms from all over the world. These
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Fig. 13. CDF of Z1 for Japanese firms in 2008. Number of firms is 176,980. Vertical broken lines indicate

upper and lower bounds of power-law range ofZ1 . Number of firms in range is 36,961.

Fig. 14. CDF of Z2 for Japanese firms in 2008. Vertical broken lines indicate upper and lower bounds of

power-law range ofZ2 . Number of firms in range is 21,239.

two laws in two variables have already been confirmed; however, the laws in three variables

were directly observed for the first time.

From the laws, the partial differential equation of joint PDFPKL(K, L) is derived. To solve

it, variablesK and L must be transformed into independent variables. In a previous study,

using the regression line derived from the least square method that was applied to the mean

values in bins, we transformed the variables. However, this procedure was not sufficiently
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Fig. 15. CDF of 1/Z2 for Japanese firms in 2008. Vertical broken lines indicate upper and lower bounds of

power-law range of 1/Z2 . Number of firms in range is 21,498.
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Fig. 16. Relationship between 2µ1/σK andµK for ten countries from 2004 to 2009: Japan (JP, average number

of observations, 146,658), France (FR, 352,755), Spain (ES, 443,179), Italy (IT, 204,139), United Kingdom

(GB, 49,288), Portugal (PT, 222,924), Korea (KR, 67,967), China (CN, 188,161), Norway (NO, 54,887) and

Germany (DE, 21,994). Dashed line represents 2µ1/σK = µK . Error bars are extremely small, so they are

omitted.

accurate to confirm that the numerically estimated power-law indices follow the analytical

results.

In this study, we applied the surface openness used in geomorphology and accurately

identified the transformation from a geomorphologic point of view. As a result, the relations
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Fig. 17. Relationship between 2µ1/σL andµL for ten countries from 2004 to 2009. Dashed line represents

2µ1/σL = µL . Error bars are extremely small, so they are omitted.
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Fig. 18. Relationship betweenµ1/θ1 andµY for ten countries from 2004 to 2009. Dashed line represents

µ1/θ1 = µY . Error bars are extremely small, so they are omitted.

among power-law indices, whose observation was difficult, can be confirmed in empirical

data. Consequently, we verified our analytical discussion and concluded that the functional

form of PKL(K, L) is valid.

In our analyses, cells with surface openness over threshold 0.8 were extracted because

they constitute the ridge of theKL plane. To extract the cells systematically for eachKL plane,

we should find the threshold value at which the cells, which constitute the ridge, decompose

small clusters.45) We hope to address this task in the future.
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