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We start from Gibrat’s law and quasi-inversion symmetry for three firm size variables (i.e.,
tangible fixed assets, number of employeels, and sale¥) and derive a partial etierential
equation to be satisfied by the joint probability density functiod aindL. We then transform

K andL, which are correlated, into two independent variables by applying surface openness
used in geomorphology and provide an analytical solution to the parfiafteintial equation.
Using worldwide data on the firm size variables for companies, we confirm that the estimates
on the power-law exponents &f, L, andY satisfy a relationship implied by the theory.
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1. Introduction

In econophysics, it is well-known that the cumulative distribution functions (CDFs) of
capital K, laborL, and productiory of firms obey power laws in large scales that exceed
certain size thresholds, which are givenKy Lo, andYp:

P.(K) o« K** for K> Kg, (1)
P.(L) cc L™ for L> Lo, (2)
P.(Y)oc Y¥ for Y>Y,. 3)

*E-mail: ishikawa@kanazawa-gu.ac.jp
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These are called Pareto’s laand positive power-law indicesk, 1, anduy are called
Pareto’s indices. In condensed matter physics, various power laws are observed in physical
guantities near the critical points of phase transitions. It is fascinating that power laws are
also observed in social quantiti€2® On the one hand, the renormalization group approach
has been employed to confirm power laws observed in physical quantities as critical phenom-
ena of phase transitioR®. Various models have also been proposed to explain power laws
observed in social phenomena (see, e.g., Retd).

Under this circumstance, without any model, Fujiwara et al. showed that power laws
arise as a result of Gibrat's 1&%*® and inversion symmetry, both of which are observed
between variables in some year and the same variables the next&gedfs (1), (L1, L141),

(Y1, Y141).2%39 By extending this discussion, we reported that power laws witlerint in-
dices are similarly obtained from Gibrat's law and quasi-inversion symmetry observed be-
tween variables in some year andfdient variables the same yea(; ), (L,Y), (K, L).31-33)

By extending the discussion on two variables to three variables, we derived the following
Cobb-Douglas production functiéf from Gibrat's law and quasi-inversion symmetry for
three variables:

Y = AKLE . (4)

In economics, the product of firmis determined by its capit#l and its labolL. This relation
is called the production function, and the Cobb-Douglas form (4) is one of the most useful
functions. Hereq andg are positive parameters that are constant in the analyzed firms. They
are called the output elasticities of capital and labor, respectirely.Eq. (4) is called the
total factor productivity and represents a firm’s technology that cannot be estimated by capital
K or laborL. The Cobb-Douglas production function has been extensively used in various
areas of economics.

Here, quasi-inverse symmetry and Gibrat’'s law are represented using joint probability
density function (PDFPk.y(K, L, Y) and conditional PDR)(RK, L) as follows3? 3%

Pxoy(K, L, Y)dKdLdY

) ) ) ot

QRIK.L) =Q(R), (6)

whereR is the rate of three variabld® = Y/aK?L? anda is a constant parameter. Quasi-

inverse symmetry is a invariance of the system under the exchange of vas&Bles« VY.
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The point of Eq. (5) is that the functional form of right-hand sklg v is not diferent from
the functional form of left-hand side. At the same time, infinitesimal volume elements, which
were not taken into account in Ré®), must be associated with the PDFs.

In previous work, we clarified that Gibrat's law and quasi-inversion symmetry in three
variables K, L, Y) is the theoretical explanation whi{(L, Y) data are well approximated by
the Cobb-Douglas production function (4). In this discussion, one issue is the identification
of the functional form of joint PDFPk, (K, L), which leads to power laws (1)—(3). To con-
firm the analytical result using empirical data, a transformation must be found that absolutely
eliminates the correlation betwe&handL. In previous works, the transformation was ap-
proximately estimated using the least square method applied to the mean values of the data
that were divided into logarithmically equal sized b#sHowever, the resulting power-law
indices did not follow the analytical results.

In this paper, using surface openn&ss® which is used in landform classification, we
determined the accurate transformation from a geomorphologic point of view and found that
the estimated power-law indices numerically do follow the theoretical relations among power-
law indices that were analytically obtained fratp (K, L).

The rest of this paper is organized as follows. In Section 2, we determine the functional
form of joint PDF Py, (K, L) from quasi-inversion symmetry and Gibrat’s law in three vari-
ables K, L, Y), both of which will be confirmed in Section 3. At the same time, power laws
(1)—(3) are directly derived frorRx_ (K, L) and relations among the power-law indices are
provided. In Section 3, we observe power laws, quasi-inversion symmetry, and Gibrat’s law
of (K, L,Y) using ORBIS, a commercially available firm-level worldwide data set compiled
by Bureau van Dijk® Next, we confirm our analytical results in Section 2. What is important
is the accurate determination of the transformation that completely eliminates the correlation
betweerK andL with surface openness in landform classification. We numerically show that
the new transformed variables are not only uncorrelated but also independent in the power-
law region. Finally, in Section 4, we summarize our findings and discuss some additional

issues.

2. Derivation of Power Laws from Quasi-inverse Symmetry and Gibrat’s Law in Three
Variables
In this section, we review previous woks™® and analytically discuss the identification
of the functional form ofPy (K, L). As a result, the power laws of three valuables (1)-(3)
are directly derived from quasi-inverse symmetry and Gibrat's law in three variables through
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PkL(K,L) . At the same time, the three indices, u,, anduy, are related to each other.
Quasi-inverse symmetry is also represented by using joint BRK(K, L, R) as follows:
Pxir(K, L RIKdLdR= Py s (RV"K, R¥L,R) d(RYK)d(R¥L)d(R™) . (7)
We can rewrite Eq. (7) as
Peir(K, L, R) = RY*P72p o (RV"K, R¥L, R™Y) . (8)

From the definition of conditional PDR(RK, L) = Pxr(K, L, R)/Px.(K, L), Eq. (8) is
rewritten:
1| pla 1/5
Pa(KD) s QRZTRIC RIL) oy 00RY o
PrL (RV2K, RVAL) Q(RIK,L) Q(R)
Here, Gibrat’s law (6) is used. The last term of Eq. (9) is only a functioR and is denoted

by G(R). Therefore, we obtain
P (K, L) = G(R)Px (RY?K, RYAL) . (10)

The definition ofG(R) is different from the definition in Ref) Because infinitesimal volume
elements in Eq. (7) or (5) were not taken into account inRef.
By expanding the right-hand side of Eq. (10) ®=around 1 (namelyR = 1 + € where

€ < 1) we obtain a dterential equation:

, K Lo
G'(1)PxL(K,L) + Ea_KPKL(K, L) + IEa_LPKL(K, L)=0. (11)

Here,G'(-) is a derivative ofG(-) with respect toR . The incorrect description d&(R) in
Ref33 has been absorbed in thefdrence of the difinition 0o6G(R), then the resulting dier-
ential equation is the same form in F&¥.

We show in the next section that variabkestrongly correlate with., and therefore, they
are not independent. To eliminate the correlation, we transform varidkl&s (0 (Z1, Z,):

109,021 = 10,0k + 100,51, 100,022 = —l0g;k + l0gy,! , (12)
with
log,o K —m log;o L —m
logiok = 200K g 1= PGt T (13)
0K oL

Next we introduce parametens, m_, ok, ando . We divide the power-law region & and

L into logarithmically equal sized cells and consider the topographic map by regarding the
logarithm of the number of firms in a cell as its altitude. Parametgrandm, are the mean
values of the central coordinates of the cells that constitute the landform’s ridge. Parameters
ok ando are V2 times of the standard deviations. In the next section, we describe them in
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detail using empirical data.

No correlation betweed; andZ, does not necessarily mean that they are independent
variables. However, in the power-law region kfandL, Z; andZ, are not only uncorre-
lated but also independent. This is numerically confirmed using empirical data. We will also
describe them in detail in the next section.

The independence of the variablés and Z,, which will be numerically confirmed in
the next section, can be analytically explained as follows. Two variaKlds)(the coordi-
nate system of which has quasi-inverse symmagpK. « L , are transformed into two
variables k, 1), the coordinate system of which has inverse symmietsy | . Note that the
definitions ofk and| are given in Eq. (13), and thak, andfx, are constant parameters.
Inverse symmetry is a invariance under the exchange of variables with respect to the line with
its slop beingr/4 . Since Eq. (12) rotates the coordinate systemip4 , the new variables
(Z1, Z2) must be independent. Also, the systetn Z,) hasZ, < 1/Z, symmetry.

By setting

1
6, = > (ocka + o B) , (14)

6, = % (—oka+o.B) , (15)

K?L? is reduced t&;"Z,% and quasi-inverse symmetry is rewritten¥as> a’Z,"7,% . Here,

a(= 10"™*#M a) js a constant parameter. As a result, quasi-inverse symmetry and Gibrat's
law are similarly observed in th&{, Z,, Y) coordinates. Therefore, using a similar discussion,
the following partial diterential equations are obtained:

’ Zl 0 Zz 0
G, (1) lezz(zl,zz) + 9_16_21P2122(Zl’ Zy) + G_Za_zzpzlzz(zla Z;) =0, (16)
_ Z; 0 _ Zt o _
G_'(1) P2,2(Z1, 2o Y + =—=P2,2.(Z1, 2o ) - ==———P2,2.(Z1,2°) =0 17
(1) Pz,z,(Z1,Z277) + 0, 971 2.2,(Z1,2Z277) 6r 92, 2.2,(Z1,Z277) ) (17)

whereG,(R) = RY#+Y%22Q(RY)/Q(R) andR = Y/a’'Z,"7Z,% . Equation (17) is obtained
from Z, & 1/Z, symmetry.

As mentioned aboveZ; andZ, are independent variables. Therefore, with the variable
separation method, solutid?y,z,(Z;, Z,) of Egs. (16) and (17) is uniquely determined to be
the product of the power-law functions &f andZ, . This will be numerically verified in the
next section. What is important here is that the power-law indeé ¢br Z, > 1 is different
from the index ofZ, for Z, < 1 . Therefore, the analytical solution is expressed as follows:

P2,2,(Z1,2Z5) = C Zy 72,271 for log,yZ, > 0, (18)
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lezz(zl, Zz) =C Zl_'ul_lzzﬂlz_l for |0910 Zz <0 5 (19)

with the conditions of variable separaticéflgj—1 + "g—jl = G.’(1) . This solution satisfies
Z, < 1/Z, symmetry, namelyPz,7,(Z1, Z,)d 2,02, = Pz,2,(Z1,Z,1)dZd(Z,7Y) . In Ref.3¥
Eq. (18), which is valid for the case of IggZ, > 0, was only presented, becauge 1/7Z,
symmetry was not discussed. In order to consider the case gfdps 0, P2z, must be
written by Eq. (19). This was suggested in Figs. 7 and 8 in°Ref.

Note that Egs. (18) and (19) continue to be a general solutioR/19,(Z1,Z,) =
G(R)Pz,z,(RY%Z,, RY%7,), even ifR deviates substantially frolR = 1, as long af)(R) sat-
isfiesQ(R) = R W+l/axl/e-20(R1) = R#/0#12/%72Q(R™1) | Using the transformation of
integration measuréz,dz, =| 24.2) | dkdL = —2-K-1L7 *dKdL, P« (K, L) is expressed

a(K,L) TKOL
as follows:
Pei (K, L) = C, K&IL-4T for | >k, (20)
P (K, L) = C_ K% IL% for |<k. (21)
Here,
- +
9; _ M2 — U1 ’ 9[ _ M2 + U1 ’ (22)
OK oL
+ J—
O = M2 + U1 , o = M2 — U1 ‘ (23)
OK oL

Note thatPg (K, L) is also the product of the power-law functionskofandL, but variables
K andL are not independent because the power-law indicek $ok are diferent from the
indices for the case thak k.

By integratingPg (K, L) by L or K, from the leading order terms, power-law functions
K andL are obtained:

P(K) = fom dLPc (K, L) ~ (

-4t o
Ciag ™ N C—afL L K_Z%_l , (24)
o/ o

Cat Cact)ma gy

P(L) = dKPk(K, L) ~
R A

where logyax. = m. — Mxo /o, l0g;pak = Mk — Mok /oL . By comparing Eq. (1) with
Eq. (24) and Eq. (2) with Eq. (25), the relations among power-law indices are found:

/JKZZﬂ, 'Ll|_:2ﬂ. (26)
OK oL

At the same time, from the result in Réfs*Y) | we conclude the following. Under quasi-
inverse symmetry < a'z,7," , Egs. (18) and (19) imply that obeys power law (3) and
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indexuy is identified ag" 33

M1 M2
=ming—,—; . 27
e = min {4222} @7)

From the data analyses of various countries from 2004 to 2009, which are discussed in the
next section, the relations among power-law indices are observyed@s< u,/6- , EQ. (27)
is reduced to

py =gt (28)
Furthermore, by writindA = R a we can regard the definition &as the Cobb-Douglas
production function (4). In this case, Gibrat's law (6) guarantees that the distribution of total
factor productivityA does not depend ok andL . Although we have made several correc-

tions on the formulation in Ref® the results there remain intact.

3. Data Analyses

In this section, an empirical analysis is carried out using the ORBIS database from 2004
to 2009 provided by Bureau van DifR. First, we observe power laws, quasi-inversion sym-
metry, and Gibrat’s law in three variableK,(, Y). After that, we confirm the analytical
discussion of the previous section using tangible fixed agsatsmber of employeels, and
firm salesy.

3.1 Power Laws

Figures 1-3 show that the CDFs Kf L, andY of Japanese firms in 2004 to 2009 obey
power laws (1)-(3) in large scales that exceed certain size thresKglds,, and Y,. On
the one hand, we determine the lower bounds of power-law rafgds, andY, using the
method in Ref? , which is a modified version of the method in R&¥. In this algorithm, the
boundary between the power-law range and the log-normal range is detected with a statistical
test.

The upper bounds of the power-law ranges are set at the top 0.1% of the data. The data
in the power-law range between the upper and lower bounds are divided into logarithmically
equal sized bins, and the power-law indices are estimated using the least square method,
which is applied to the collective data in the bins.

3.2 Quasi-inversion Symmetry
Let us observe quasi-inversion symme¥fy— aK?L? among three variablek(L, Y)
in the power-law region determined in 3.1. In this paper, this is called the quasi-inversion
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Fig. 1. Distribution of tangible fixed asseksfor Japanese firms from 2004 to 2009. Number of firms changes

across years but averages 148,186.
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Fig. 2. Distribution of number of employeels for Japanese firms from 2004 to 2009. Number of firms
changes across years but averages 155,465.

symmetry. Herea, «, andg are the constant parameters that are identified as follows.
Figure 4 depicts a scatter plot betwelénand L of Japanese firms in 2008. As shown
in Fig. 4, since we divide the power-law rangeskoindL into logarithmically equal sized
bins, the power-law region is divided into cells enclosed by dashed lines. In each cell, we
calculated the logarithmic mean ¥f By applying a least square method to the mean values
of cells, we obtained a regression plane surface. By identifying the plane as the plane of the
quasi-inverse symmetry, namely, g = alog,,K + glog,, L + log,,a, valuesa, o, andg
are estimated from the intercept and two components of the normal vector. For Japanese firms
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Fig. 3. Distribution of salesy for Japanese firms from 2004 to 2009. Number of firms changes across years
but averages 601,211.

in 2008, the values were calculatedeas 683 + 1.1, = 0.36+ 0.02, and3 = 0.70+ 0.02.
With a, @, andp determined above, consider a scatter plot betwéandY’(= aK?L¥)
(see Fig. 5). Quasi-inverse symmelfty< Y’ is observed by conducting a Kolmogorov-

Smirnov test as follows. We first divide the range Yofand Y’ into 18 bins of logarith-
mically equal size, given by,Y’ € [102-4+°-2(”‘1>, 104+°-2”),n = 1,2,---,18, as illus-
trated in Fig. 5. The null hypothesis, that two distributi@({sloz“*"-z(”‘l), 104+°~2”),Y’) and
P(Y, [102~4+°~2(”‘1), 104+°~2”)) are identical, cannot be rejected at the 5% significance level in
the power-law rangen(> 10 in Fig. 6).

Consequently, quasi-inverse symmelfye ak?L? (K o (Y/al/)le, L & (Y/aK)'¥)
is numerically confirmed in three valuableK,(,Y) and is expressed using joint PDF
Pkuv(K, L,Y) as Eqg. (5).

3.3 Gibrat's Law

We define the rate of three valuables= Y/aK?L? . The property, under which condi-
tional PDFQ(RK, L) does not depend ok andL, is called Gibrat's law: Eq. (6). Figure 7
shows conditional PDFQ(RK, L) of six blocks, which contain more than 50 data points
(K, L), out of 25 blocks in Fig. 4. The fference of the blocks corresponds to th&ed
ence of K, L) . From Fig. 7, we observe that PDEXRK, L) are identical. Therefore, in the

power-law region, we confirmed Gibrat’s law.

921



J. Phys. Soc. Jpn. DRAFT

Fig. 4. Scatter plot betweek (in thousands of US dollars) ardof Japanese firms in 2008. Amount of data
is 176,980. As an example, power-law rangeKadndL are divided into 5 logarithmically equal sized bins,
and the power-law region is divided into 25 cells. Amount of data in the power-law region is 26,286.

10°
|

10°

10*

102
1

10°
1

Fig. 5. Scatter plot betweel andY’(= aK?L?) of Japanese firms in 2008. Dashed lines indicate bing of
andY’, given byY, Y’ € [1041020-1), 10%02") n=1,2,--- 18, respectively.

3.4 Ridge of KL Plane

K andL data points are scattered in tk& plane (see Fig. 4). To clearly comprehend the
density, we divided it into logarithmically equal sized cells and expressed the amount of data
points in the cells in the light and the shade (see Fig. 8). Consider the logarithm of a cell’s
density as its height. Then the ridge is observed from the upper right to the lower left in the

1021



J. Phys. Soc. Jpn. DRAFT

1.0

0.8

p-value
0.6
|

04

0.2

1025 10 10%%  10*  10*®  10°  10%°

YY

Fig. 6. Null hypothesis that two distributiorn(| 1074+020-D, 10+02) ") and P(Y, | 1074+020-D, 10+02n))
(n=1,2,---,18) are identical, cannot be rejected at the 5% significance level in the power-law nand®y.
Vertical lines indicate lower bounds &fandY’ .
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Fig. 7. Conditional PDFLQ(RK, L) of six blocks that contain more than 50 data poittsl() out of 25 blocks
in Fig. 4.

KL plane. As the steepest-ascent line in the profit space, a ridge is discussed‘h. Ref.
this paper, we determine the cells that constitute the ridge using the surface openness defined
as follows36-3®)

Figure 9 depicts the grid linked by the center points of the cells. From grid pggint
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we counterclockwisely represent each azimuttDas: 1,2,---,8 . As shown in Fig. 10,
the minimum zenith and nadir angles at grid poftvithin distanceL in azimuthD are

represented by¢, andpy, . Positive openness, is defined by the mean value g, along

the eight azimuth, and negative openn&gss the corresponding mean gf, . The surface
openness is defined by thefférence:

1< 1<
®L—‘I’L=§;D¢L—§;D'J/L~ (29)

The surface openness takes a negative value at the depressions and the valleys, zero at the
level surface, the saddle point, and the uniform slope, and positive values at the ridge and the
summit. In this analysis, by setting = 10, we estimate the surface openness for each cell
and extract the cells of the opennesses that excéediO Fig. 8, the cells in the power-law
region are expressed by black dots.

--------- »FI- ===

10! 10° 10° 107
2008 JAPAN

Fig. 8. To clearly comprehend the density of Fig. 4, we divide Kieplane into logarithmically equal sized
cells and express the number of data points in them in light and shade. Broken lines represent upper and lower
bounds of power-law ranges BfandL .

3.5 Independence of, And 2 and the Distributions

The black dots in Fig. 8 are the centers of cells {}dg, log,, Li) that constitute the ridge
in the power-law region of th&L plane ( = 1,2,--- ,N) . Here,N is number of cells which
constitute the ridge. We signify the means and ¥ times of the standard deviations as
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Fig. 9. Grid linked by center points of cells. From a grid point, we counterclockwisely represent each azimuth
asb=12---,8.

Fig. 10. Dots represent height of cells within distarlcin azimuthD . From grid pointA within distanceL,
we estimate zenith angles and denote the minimupwas Similarly, the minimum nadir angle is expressed by
DYL -

(mg, my) and gk, o), respectively as follows:

1 & 1 &
Mk N le log,oKi, m = N Zl“ log,oLi, (30)
I= 1=

2 < 2 §
oK = J N Z (logyo Ki — mk)?, o = J N Z (logyoLi —my)*. (31)
— =

In Fig. 8,N = 39,mx = 4.87,m_ = 2.78,0« = 1.10, ando. = 1.05 . Using the parameters,
Eqg. (12) transforms all data (IggK, log,, L) into (l0g,,Z;,109,72Z,) . Figure 11 shows the
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scatter plots betweesy andZ, .

VariablesZ; andZ,, which were obtained by the transformation (12), are not only uncor-
related but also independent. To confirm the independence beRyesnl Z,, we divide the
range ofZ, into 15 logarithmically equal sized bing; € [10192(-1 10%92") (n = 1,...,15)
as shown in Fig. 11. Conditional PDIPs,(Z; | Z; € [10-1*020-D) 10-1+02M) are depicted in
Fig. 12. The distributions for the fierent values oh are almost identical. In fact, using the
Kolmogorov-Smirnov tests, with the null hypothesis that, for any pair of 15 distributions, two
distributions are identical cannot be rejected at the 5% significance Ry&|Z;) = Pz, (Z,)

Is equivalent withPz,z,(Z1, Z2) = Pz (Z1)Pz,(Z;) , and then the independence betw&eand
Z, is confirmed numerically. At the same time, from Fig. 12, we also confism~ 1/Z,
symmetry.

102
|

Z;

10°
|

10 10* 107 10° 10% 10*

Z4

Fig. 11. Scatter plots between; andZ, are transformed fronkK andL of Japanese firms in 2008. Thick
vertical lines indicate upper and lower bounds of power-law rangg off hin vertical lines indicate bins &f;,
given byz; € [1071¥0200-1) 10-1+02m) (n = 1,...,15) . Rhombus indicates corresponding power-law region of
K andL .

3.6 Consistency of Power-law Indices

When variablegZ; andZ, are independent, the solution of partiaffdrential Eqgs. (16)
and (17) is uniguely determined to be the product of the power-law functioAs afidZ, .
Figure 13 shows the CDF &, which is the numericak, integration of the scatter plots
betweerz; andZ, . In the figure, the power law &, is observed in a range that corresponds
to the power-law region ok andL .
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Fig. 12. Conditional PDF$,,(Z; | Z; € [10+020-1) 101020y (n=1,.. ., 15)

Figures 14 and 15 depict the CDFs&fand 1/Z,, which are the numerica, integrations
of the scatter plots betweefy andZ, . In the figures, the power laws @ and 1/Z, are
observed in th&, > 1 andZ, < 1 ranges that correspond to the power-law regioK @hd
L, respectively. These features did not change ffedént years or in other countries.

From these observations, the power laws, which are the solution of Egs. (16) and (17),
are represented as Egs. (18) and (19). For Japanese firms in 2008, the parameters in Eq. (27)
are estimated gg = 0.463+ 0.001,u, = 1.22+0.01, 4’ = 1.19+ 0.02,6; = 0.569+ 0.018,
andd, = 0.171+0.018 . Herey,' is an estimate from/Z, distribution. In this casez,’(1) =
156+ 1.68,G_"(1) = 3.68+ 0.35, andu;/6; + uz/6> = 7.95+ 0.93 . Using these parameters
Eq. (27) is reduced to Eq. (28), and this feature also did not chang&anettit years or in
other countries.

Finally, let us numerically confirm the validity of Egs. (26) and (28). Figures 16-18 rep-
resent the relations betwegp and 2u; /o0, u. and i, /o, uy andu, /6, for ten countries
from 2004 to 2009, except for years when the amount of data was fimient. Figures 16
and 17 show the validity of Eq. (26), and we also confirmed the validity of Eq. (28) from
Fig. 18.

4. Conclusion
We directly observed quasi-inverse symmetry and Gibrat’s law of three variables: tangible
fixed asset¥, number of employeek, and sale¥ of firms from all over the world. These
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Fig. 13. CDF of z; for Japanese firms in 2008. Number of firms is 176,980. Vertical broken lines indicate
upper and lower bounds of power-law rangeZof Number of firms in range is 36,961.
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Fig. 14. CDF of Z, for Japanese firms in 2008. Vertical broken lines indicate upper and lower bounds of
power-law range oF, . Number of firms in range is 21,239.

two laws in two variables have already been confirmed; however, the laws in three variables
were directly observed for the first time.

From the laws, the partial fierential equation of joint PDPk (K, L) is derived. To solve
it, variablesK andL must be transformed into independent variables. In a previous study,
using the regression line derived from the least square method that was applied to the mean
values in bins, we transformed the variables. However, this procedure wasfhcesatly
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Fig. 16. Relationship betweeni/ok andug for ten countries from 2004 to 2009: Japan (JP, average number
of observations, 146,658), France (FR, 352,755), Spain (ES, 443,179), ltaly (IT, 204,139), United Kingdom
(GB, 49,288), Portugal (PT, 222,924), Korea (KR, 67,967), China (CN, 188,161), Norway (NO, 54,887) and
Germany (DE, 21,994). Dashed line represents/@« = uk - Error bars are extremely small, so they are
omitted.

accurate to confirm that the numerically estimated power-law indices follow the analytical
results.

In this study, we applied the surface openness used in geomorphology and accurately
identified the transformation from a geomorphologic point of view. As a result, the relations
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Fig. 17. Relationship betweenu2/o andy, for ten countries from 2004 to 2009. Dashed line represents
2ui/o = uy . Error bars are extremely small, so they are omitted.
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Fig. 18. Relationship betweep;/6; anduy for ten countries from 2004 to 2009. Dashed line represents
u1/61 = py . Error bars are extremely small, so they are omitted.

among power-law indices, whose observation wdBadilt, can be confirmed in empirical
data. Consequently, we verified our analytical discussion and concluded that the functional
form of Py (K, L) is valid.

In our analyses, cells with surface openness over thresh8ld/iére extracted because
they constitute the ridge of th€L plane. To extract the cells systematically for e&dhplane,
we should find the threshold value at which the cells, which constitute the ridge, decompose
small cluster$® We hope to address this task in the future.

1821



J. Phys. Soc. Jpn. DRAFT

Acknowledgment
This study was supported by JISPS KAKENHI Grant Number 24510212, 24710156.

1921



J. Phys. Soc. Jpn. DRAFT

References

1) V. ParetoCours dEconomie PolitiquéMacmillan, London, 1897).

2) M. E. J. Newman: Contemporary Phys#(2005) 323.

3) A. Clauset, C. R. Shalizi, and M. E. J. Newman: SIAM RevEin(2009) 661.
4) E. Bonabeau and L. Dagorn: Phys. RebH1995) R5220.

5) S. Render: Eur. Phys. J.48(1998) 131.

6) M. Takayasu, H. Takayasu, and T. Sato: Physi@B838(1996) 824.

7) A. Saichev, Y. Malevergne, and D. Sornefléeory of Zipf’'s Law and Beyorn(&pringer,
Berlin, 2009).

8) T. Kaizoji: Physica A326(2003) 256.

9) T. Yamano: Eur. Phys. J. 83 (2004) 665.

10) A. Ishikawa: Physica 871(2006) 525.

11) A.Ishikawa: Prog. Theor. Phys. Supd&9(2009) 103.
12) R. N. Mantegna and H. E. Stanley: Nat@i# (1995) 46.
13) R. L. Axtell: Science93(2001) 1818.

14) B. Podobnik, D. Horvatic, A. M. Petersen, B. Bavic, and H. E. Stanley: Proc. Natl.
Acad. Sci.107(2010) 18325.

15) D. Fu, F. Pammolli, S. V. Buldyrev, M. Riccaboni, K. Matia, K. Yamasaki, and H. E. Stan-
ley: Proc. Natl. Acad. Scil02(2005) 18801.

16) B. Podobnik, D. Horvatic, F. Pammolli, F. Wang, H. E. Stanley, and I. Grosse: Phys. Rev.
E 77 (2008) 056102.

17) K. Okuyama, M. Takayasu, and H. Takayasu: Physi@6®(1999) 125.
18) J. J. Ramsden and G. Kiss-HayPhysica A277(2000) 220.

19) T. Mizuno, M. Katori, H. Takayasu, and M. Takaya&mpirical Science of Financial
Fluctuations(Springer, Tokyo, 2002) p.321.

20) E. Gdfeo, M. Gallegati, and A. Palestrinib: Physica324(2003) 117.
21) J. Zhang, Q. Chen, and Y. Wang: Physica838(2009) 2020.

22) H. Kesten: Acta Mathl31(1973) 207.

23) M. Levy and S. Solomon: Int. J. Mod. Phys7@1996) 595.

2021



J. Phys. Soc. Jpn. DRAFT

24) D. Sornette and R. Cont: J. Phys.(1997) 431.

25) H. Takayasu, A. Sato, and M. Takayasu: Phys. Rev. £81{1997) 966.

26) H. E. Stanleyintroduction to Phase Transitions and Critical Phenomé@darendon
Press, Oxford, 1971).

27) R. Gibrat: Les Inégalite$conomiquesSirey, Paris, 1932).

28) J. Sutton: J. Econ. LiB5(1997) 40.

29) Y. Fujiwara, W. Souma, H. Aoyama, T. Kaizoji, and M. Aoki: Physic824 (2003) 598.

30) Y. Fujiwara, C. D. Guilmi, H. Aoyama, M. Gallegati, and W. Souma: Physica3A
(2004) 197.

31) T. Watanabe, T. Mizuno, A. Ishikawa, and S. Fujimoto: Economic Review (Keizal
Kenkyuu)62(2011) 193 [in Japanese].

32) T. Mizuno, T. Watanabe, A. Ishikawa, and S. Fujimoto: Prog. Theor. Phys. Sdgdle.
(2012) 122.

33) A. Ishikawa, S. Fujimoto, T. Watanabe, and T. Mizuno: Physi@92A(2013) 2104.

34) C. W. Cobb and P. H. Douglas: Amer. Econ. RE8/(1928) 139.

35) H. Watanabe, H. Takayasu, and M. Takayasu: Statistical Studies on Interrelationships
of Financial Indicators of Japanese Firms, The Physical Society of Japan 2009 Autumn
Meeting [in Japanese].

36) R. Yokoyama, M. Sirasawa, and Y. Kikuchi: Journal of the Japan Society of Photogram-
metry and Remote Sensiidg (4) (1999) 26 [in Japanese with English abstract].

37) R. Yokoyama, M. Sirasawa, and R. Pike: Photogrammetric Engineering and Remote
Sensing8 (3) (2002) 257.

38) O. D. A. Prima, A. Echigo, R. Yokoyama, and T. Yoshida: Geomorphok&)(2006)

373.

39) Bureau van Dijk, httg/www.bvdinfo.conmiHome.aspx.

40) A. H. Jessen and T. Mikosch: Inst. Mag4 (2006) 171.

41) X. Gabaix: Annu. Rev. Ecoi. (2009) 255.

42) S. Fujimoto, A. Ishikawa, T. Mizuno, and T. Watanabe: Economics E-Jobr{z411)
2011-20.

43) Y. Malevergne, V. Pisarenko, and D. Sornette: Phys. R83 2011) 036111.

44) W. Souma:Econophysics of Markets and Business Netwd@8winger, Italia, 2007)
p.149.

45) D. H. Kim and H. Jeong: Phys. Rev.72 (2005) 046133.

2121



	WP表紙_Price [互換モード]
	JPSJ

