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Abstract

This paper investigates history dependent easing known as a conventional wis-

dom of optimal monetary policy in a liquidity trap. We show that, in an economy

where the rate of inflation exhibits intrinsic persistence, monetary tightening is

earlier as inflation becomes more persistent. This property is referred as early

tightening and in the case of a higher degree of inflation persistence, a central

bank implements front-loaded tightening so that it terminates the zero interest

rate policy even before the natural rate of interest turns positive. As a prominent

feature in a liquidity trap, a forward guidance of smoothing the change in inflation

rates contributes to an early termination of the zero interest rate policy.
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1 Introduction

The theory of monetary policy has been developed since 1990s based on a new Keynesian

model as represented by Clarida et al. (1999) and Woodford (2003). In particular,

Woodford (2003) finds history dependence as a general property of optimal monetary

policy. The optimal monetary policy rule explicitly includes lagged endogenous variables

and the current monetary policy reflects the past economic environment.

Among the prominent extensions, Eggertsson and Woodford (2003a,b) and Jung et al.

(2001, 2005) first show optimal monetary policy in a liquidity trap in a purely forward-

looking new Keynesian model. Many papers advance analyses of the optimal zero interest

rate policy and their robust conclusion about a feature of optimal monetary policy is

history dependence. In a liquidity trap, a central bank needs to tenaciously continue the

zero interest rate policy even after the natural rate of interest turns positive. The future

high inflation created by committing to continuing the zero interest rate can reduce the

real interest rate, which stimulates the economy even when the current nominal interest

rate is bound at zero.

The previous literature, however, is based on a forward-looking model. Woodford

(2003) shows that the forward-looking economy and history dependence are two sides

of a coin in optimal monetary policy. The question is: is history dependence always a

sufficient property of optimal monetary policy in a liquidity trap even when the economy

has intrinsic persistence? This question is relevant from the perspective in theory as

well as in practice since an exit strategy from a zero interest rate policy can be different

from a conventional wisdom.

Empirical studies using U.S. economic data show that the inflation rate is highly

persistent and the Phillips curve is both forward-looking and backward-looking. Fuhrer

and Moore (1995) and Gaĺı and Gertler (1999) broadly show that a hybrid Phillips

curve rather than a purely forward-looking Phillips curve is suitable for monetary policy
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analyses. Christiano et al. (2005) and Smets and Wouters (2007) estimate the hybrid

Phillips curve in a dynamic stochastic general equilibrium model and it suits the U.S.

economy.1 Relaxing the assumption of a purely forward-looking economy is a key to

illustrate the role of history dependence and new features of optimal monetary policy in

a liquidity trap. To that end, using a more realistic model, i.e., a model with inflation

persistence would be useful.

In this paper, we show optimal monetary policy in a liquidity trap using a standard

new Keynesian model with inflation persistence. We analytically derive optimal mone-

tary policy and investigate its features. The novel feature is that a central bank should

implement early tightening rather than history dependent easing. A forward guidance of

committing to smoothing the change in inflation rates contributes to this feature. In an

economy with inflation persistence, the central bank’s objective changes from achieving

a target level of an inflation rate to smoothing the change in inflation rates. Therefore,

private agents expect an accommodative monetary policy. This produces an acceleration

of inflation rates and terminating the zero interest rate policy is earlier compared to the

case of an economy without inflation persistence.

We examine these mechanisms by numerical simulations of when to exit from the zero

interest rate policy. The optimal timing of ending the zero interest rate policy becomes

earlier, as inflation persistence becomes larger. In the case of a higher degree of inflation

persistence, the zero interest rate policy is terminated even while the natural rate is

below zero, that is, monetary tightening is front-loaded. We also observe such a front-

loaded tightening against the peak inflation rate. A strong power of forward guidance

and inflation inertia contribute to the outcomes. The results are in stark contrast to

those in a purely forward-looking economy.

Our paper is related to three strands of previous literature, but in stark contrast with

them in the following ways. First, our paper is related to optimal monetary polciy in

the model with inflation persistence such as in Woodford (2003) and Steinsson (2003).

1Schorfheide (2008) surveys degrees of inflation persistence through lagged inflation rates in various

dynamic stochastic general equilibrium models.
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In particular, Woodford (2003) derives the Phillips curve including inflation inertia by

the indexation rule. Inflation inertia through indexation is realistic in a low inflation

era, in particular for periods of exit from a zero interest rate policy. Terminating the

zero interest rate policy requires an environment of extensive progress of inflation rates

including backward-looking adjustment by indexation. Our paper clearly differs from

these two papers in that we consider the zero lower bound on nominal interest rates.

Second, our paper is related to optimal monetary policy in a liquidity trap. Eg-

gertsson and Woodford (2003a,b) and Jung et al. (2001, 2005) show that the optimal

commitment policy is history dependent so that a central bank continues a zero interest

rate policy even after the natural rate turns positive.2 Adam and Billi (2006, 2007) and

Nakov (2008) solve the optimal commitment policy as well as the discretionary policy

under the zero lower bound on nominal interest rates with stochastic shocks. Werning

(2011) shows that the future consumption boom as well as the future high inflation play

important roles to mitigate a liquidity trap. Fujiwara et al. (2013) extend the model

to the open economy and show an optimal zero interest rate policy in a global liquidity

trap.3 They assume a forward-looking model and find history dependence as a robust fea-

ture of optimal monetary policy. Our paper adds a missing piece of inflation persistence

on these studies and show an exit strategy from a zero interest rate policy.

Third, our paper is related to the forward guidance puzzle discussed in Del Negro

et al. (2012) and McKay et al. (2015). They point out that the future forward guidance

by a central bank is extremely powerful in a liquidity trap so that it drastically lifts the

inflation rate and the output gap. Our result reveals that the power of forward guidance

2Eggertsson and Woodford (2006) and Eggertsson (2006, 2008, 2012) reveal roles of fiscal policy as

well as monetary policy in a liquidity trap.

3There are many other influential papers regarding optimal monetary policy in a liquidity trap. For

example, Jeanne and Svensson (2007) show the important role of currency depreciation and price level

targeting as a commitment device to escape from a liquidity trap. Billi (2011) focuses on the optimal

long-run inflation rate to preempt falling into a liquidity trap. Evans et al. (2015) show an exit strategy

from the zero interest rate policy under a suboptimal policy, i.e., optimal discretionary policy, using a

purely forward-looking model and a purely backward-looking model.
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is strengthened in an economy which exhibits inflation persistence and a liquidity trap.

The forward guidance is so strong that it offsets initial deflation in a liquidity trap.

This is a distinct feature of optimal monetary policy only in an economy with inflation

persistence. A reason for this is that a central bank’s commitment to smoothing the

change in inflation rates induces expectations for an accommodative monetary policy,

which accelerates inflation rates. Furthermore, unlike the conclusion of McKay et al.

(2015), the forward guidance puzzle cannot be fully solved in the case of the optimal

commitment policy.

The remainder of the paper proceeds as follows. Section 2 presents a model in the

economy with inflation persistence. Section 3 derives an optimal monetary policy in a

liquidity trap and Section 4 examines numerical simulations to show the optimal exit

strategy from a zero interest rate policy. Section 5 shows robustness and applications.

Section 6 concludes.

2 The Model

We use a new Keynesian model proposed by Woodford (2003). The macroeconomic

structure is expressed by the following three equations:

xt = Etxt+1 − χ (it − Etπt+1 − rnt ) , (1)

πt − γπt−1 = κxt + β (Etπt+1 − γπt) + µt, (2)

rnt = ρrr
n
t−1 + εrt , (3)

where χ, κ, β, γ, and ρr are parameters, satisfying χ > 0, κ > 0, 0 < β < 1, 0 ≤ γ ≤ 1,

and 0 ≤ ρr < 1. xt, it and πt denote the output gap, the nominal interest rate (or policy

rate), and the rate of inflation in period t, respectively. The expectations operator Et

covers information available in period t. rnt is the natural rate of interest, which is

assumed to follow an AR(1) process. εrt is i.i.d. disturbance with variances of σr. µt is

the cost-push shock that is i.i.d. disturbance with variances of σµ.

Equation (1) is the forward-looking IS curve. The IS curve states that the current

output gap is determined by the expected value of the output gap and the deviation of
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the current real interest rate, defined as it − Etπt+1, from the natural rate of interest.

Equation (2) is the hybrid Phillips curve. γ denotes the degree of inflation persistence.

In particular, when γ = 0, the hybrid Phillips curve collapses to a purely forward-looking

Phillips curve, in which current inflation depends on expected inflation and the current

output gap. When 0 < γ ≤ 1, the Phillips curve is both forward-looking and backward-

looking and the current inflation rate depends on the lagged inflation rate as well as the

expected inflation and the current output gap. As γ approaches one, the coefficient on

the lagged inflation rate approaches 0.5.

In this paper, we assume inflation persistence with indexation. Specifically, we follow

Woodford (2003), who derives the Phillips curve including inflation inertia with a micro-

foundation.4 In the indexation rule, some firms that cannot reoptimize their own goods

prices adjust current prices based on the past inflation rate. The indexation mechanism

is empirically supported by Christiano et al. (2005) and Smets and Wouters (2007). We

can analyse both the purely forward-looking Phillips curve and the hybrid Phillips curve

by changing parameters of inflation persistence.

Next, we consider the central bank’s intertemporal optimization problem. The central

bank sets the nominal interest rate it so as to minimize the welfare loss Lt defined as

Lt = Et

∞∑
i=0

βiLt+i, (4)

where Lt is the period loss function obtained by second-order approximation of the

household utility function. In an economy with inflation inertia, Woodford (2003) shows

that Lt is given by

Lt = (πt − γπt−1)2 + λxx
2
t ,

where λx is a non-negative parameter. A central bank needs to stabilize πt−γπt−1 rather

than the inflation rate itself when inflation exhibits intrinsic persistence. In an economy

without inflation persistence, dispersion comes from an environment where some firms

4There are several theoretical foundations to introduce inflation persistence. For example, Mankiw

and Reis (2002) introduce information rigidity to produce inflation persistence. Milani (2007) points

out the importance of an agent’s learning for inflation persistence.
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reoptimize prices and other firms do not change prices at all. In an economy with

indexation on inflation rates, however, dispersion comes from an environment where

some firms not reoptimizing their prices follow the past inflation rate with a certain

degree in their price setting and other firms reoptimize prices. Therefore, to minimize

price dispersion, a central bank needs to set the current inflation rate so as to be close

to the adjusted lagged inflation rate.

Finally, we impose a nonnegativity constraint on the nominal interest rate:

it ≥ 0. (5)

It should be noted that the presence of a nonnegativity constraint introduces nonlinearity

in an otherwise linear-quadratic model. The central bank maximizes equation (4) subject

to equations (1)-(3) and (5).

3 Optimal Monetary Policy in a Liquidity Trap

We analytically characterize optimal monetary policy in a liquidity trap and clarify an

implication of an optimal exit strategy. Optimal monetary policy under the zero lower

bound on the nominal interest rate in a timeless perspective is expressed by the solution

of the optimization problem.5 To investigate features of optimal monetary policy, we

denote the degree of inflation persistence in the hybrid Phillips curve as γpc and that in

the period loss function as γloss. This setup is just to clarify the mechanism of inflation

persistence and we set γpc = γloss = γ in the benchmark. The optimization problem is

represented by the following Lagrangian form:

L = Et

∞∑
i=0

βi


(πt+i − γlossπt+i−1)2 + λxx

2
t+i

−2φ1t+i

[
xt+i+1 − χ

(
it+i − πt+i+1 − rnt+i

)
− xt+i

]
−2φ2t+i [κxt+i + β (πt+i+1 − γpcπt+i)− πt+i + γpcπt+i−1]

 ,

5The central bank solves an intertemporal optimization problem in period t, considering the expecta-

tion channel of monetary policy, and commits itself to the computed optimal path. This is the optimal

solution from a timeless perspective defined by Woodford (2003).
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where φ1 and φ2 are the Lagrange multipliers associated with the IS constraint and the

Phillips curve constraint, respectively. We differentiate the Lagrangian with respect to

πt, xt, and it under the nonnegativity constraint on nominal interest rates to obtain the

first-order conditions:

−βγloss (Etπt+1 − γlossπt)+πt−γlossπt−1−β−1χφ1t−1−βγpcEtφ2t+1+(βγpc + 1)φ2t−φ2t−1 = 0,

(6)

λxxt + φ1t − β−1φ1t−1 − κφ2t = 0, (7)

itφ1t = 0, (8)

φ1t ≥ 0, (9)

it ≥ 0. (10)

Equations (8), (9), and (10) are conditions for the nonnegativity constraint on nom-

inal interest rates. The above five conditions, together with the IS curve of equation

(1) and the hybrid Phillips curve of equation (2), govern the loss minimization. The

optimal interest rate is determined by these conditions each period. We also need initial

conditions for all variables being zero except the nominal interest rate, which takes a

positive value in the steady state. When the nonnegativity constraint is not binding,

i.e., it > 0, the Lagrange multiplier φ1t becomes zero by the Kuhn-Tucker condition in

equation (8), and the interest rate is determined by the conditions given by equations

(1), (2), (6), and (7) with φ1t = 0. When the nonnegativity constraint is binding, i.e.,

it = 0, the interest rate is simply set to zero. The interest rate remains zero until the

Lagrange multiplier φ1t becomes zero.

We cannot solve this system using the standard solution method because of the non-

negativity constraint on nominal interest rates, and numerical simulations are required
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to obtain the path of variables under optimal monetary policy in a liquidity trap. The

first-order conditions in period t given by equations (6) and (7), however, characterize

qualitative features of optimal monetary policy in a liquidity trap and in the economy

with inflation persistence.

The first feature is that, due to the central bank’s objective to minimize the change in

inflation rates, i.e., πt−γπt−1, the optimality condition includes terms to smooth inflation

rates as shown in equation (6). Specifically, the expected change in inflation rates as

well as the current change in inflation rates induce a strong commitment to inflation

smoothing. A high inflation rate comes with a high expected inflation rate. Thus, in an

economy with inflation persistence, agents expect more accommodative monetary policy

than in an economy where the central bank’s objective is to minimize the deviation of

inflation rates from a target level.

The second feature of optimal monetary policy is forward-looking terms associated

with introducing inflation persistence into the model. The central bank implements

monetary policy based on a forecast of future inflation rates and the output gap. There

are two channels to make optimal monetary policy forward-looking. The first chan-

nel functions through the parameter γloss on the future inflation rate in equation (6).

Optimal monetary policy in a model with inflation persistence should respond to the

expected inflation rate. The second channel works through the parameter γpc in equa-

tion (6) on the Lagrange multiplier φ2t+1 that is related to the future output gap and

a future zero interest rate condition. Note that the optimality condition includes the

backward-looking variables, which induces history dependent policy in a similar vein as

the standard model. Theoretically, both forward-looking and backward-looking elements

contribute to determining the optimal path of the nominal interest rates, including the

optimal timing of exit from the zero interest rate.

When comparing the optimal targeting rule with that in the previous literature, the

features of optimal monetary policy become evident.6

6We can derive an optimal price-level targeting rule which exactly achieves the same optimal com-

mitment solution as the inflation targeting rule. Defining a price-level p̃t and a price-level target p∗t
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βγpcEtφ1t+1 − (1 + γpc + βγpc)φ1t +
(
1 + β−1 + γpc + β−1κχ

)
φ1t−1 − β−1φ1t−2

= −κβγloss (Etπt+1 − γlossπt) + κ (πt − γlossπt−1)− βλxγpcEt4xt+1 + λx4xt. (11)

This optimal targeting rule includes the zero interest rate condition given by φ1. The

optimal targeting rule is forward-looking due to inflation persistence as well as backward-

looking. The change in inflation rates is directly related to optimal monetary policy. The

rule reveals that the coefficient on πt− γlossπt−1 is positive, i.e., there is a negative effect

on φ1t, and the zero interest rate policy should be terminated when the inflation rate

sufficiently accelerates. It, however, notes that the coefficient on Etπt+1 − γlossπt is

negative, i.e., there is a positive effect on φ1t. An acceleration of the inflation rate in the

future works to keep a zero interest rate policy since a central bank has an incentive to

smooth inflation rates. As a result, an acceleration of expected inflation rate induces an

acceleration of the current inflation rate, which contributes to strengthening the effect of

the commitment policy and increases inflation rates.7 Therefore, the zero interest rate

policy is terminated earlier.

If the nominal interest rate does not hit the zero lower bound, φ1 becomes zero and the

optimal targeting rule (11) can be reduced to backward-looking as shown in Woodford

as

p̃t ≡ pt − γpt−1 +
λx
κ
xt,

φ1t ≡ κ (p∗t − p̃t) ,

we have the following optimal price-level targeting rule.

p∗t ≡
γβ

1 + γβ
Etp
∗
t+1 +

1

1 + γβ
p∗t−1 −

γ

1 + γβ
Qt +

1

1 + γβ

(
γ + β−1 − κχ

β

)
Qt−1 −

β−1

1 + γβ
Qt−2,

where Qt ≡ (p∗t − p̃t) for simplicity. The prominent feature of the rule is Etp
∗
t+1. The price-level target

should depend on the future target level of price associated with future economic conditions. When γ

is zero, this rule is reduced to the one in Eggertsson and Woodford (2003a,b).

7We make this point clearer in terms of the level of the inflation rate in Appendix A.
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(2003).8

κ (πt − γlossπt−1) + λx4xt = 0.

Unlike equation (11), the rule is not hybrid, implying that forward-looking terms drop

from the targeting rule. The forward guidance of smoothing inflation rates weakens since

there is only one term for the change in inflation rates in the case where the nominal

interest rate does not hit the zero lower bound. It is a phenomenon of a liquidity trap

that strengthens the forward guidance by committing to a zero interest rate policy.

When γ is zero, this rule collapses to the standard optimal targeting rule in the

forward-looking new Keynesian model as follows:

κπt + λx4xt = 0.

4 Optimal Exit Policy

4.1 Basic Calibration

In this section, we numerically solve the model and characterize the optimal exit strategy

from the zero interest rate policy. The baseline quarterly parameters are typical for the

U.S. economy as in Table 1. We set χ = 6.25, α = 0.66, and κ = 0.0244 in structural

equations from Woodford (2003).9 Based on these structural parameters, we calculate

λx = 0.048/16. The natural rate shock is stochastic with variance σr = 0.2445 and

persistence ρr = 0.8, as in Adam and Billi (2006). The steady state real interest rates

is set to be 3.5 percent annually. The model is solved numerically by the collocation

8Another form is given by

κ (Etπt+1 − γlossπt) + λxEtxt+1 = 0.

9Several studies estimate γ in range from about 0.2 to 1. For example, Smets and Wouters (2007)

estimate γ as 0.24. Giannoni and Woodford (2004), Christiano et al. (2005), and McKay et al. (2015)

imply the case of full indexation and set γ as one.
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method and technical methodology to implement simulations is described in Appendix

B.

Figure 1 shows optimal responses of the interest rate to natural rate shocks for differ-

ent inflation inertia.10 A central bank starts the zero interest rate policy even when the

natural rate shock is still positive. This is an effect of uncertainty of shocks as pointed

out in Adam and Billi (2006). Even in the presence of inflation inertia, uncertainty of

the natural rate shock requires a central bank to conduct preemptive monetary easing.

The additional contribution of introducing inflation persistence is that the zero interest

rate policy is terminated earlier, as inflation persistence becomes larger in response to

the natural rate shocks.

4.2 Simulations

4.2.1 One-time Shock

We assume a simple situation where a one-time shock with a persistence of ρr = 0.8 occurs

in period 0. In particular, we give a 2 percent negative natural rate shock (equivalent to

8 percent annually) to make the economy into a liquidity trap. 11 We also give a larger

shock, i.e., an annual 12 percent negative natural rate shock with a persistence of 0.8.

Figure 2 shows the timing of an optimal exit from an zero interest rate in response to

an annual 2 percent negative natural rate shock for different degrees of inflation inertia.

Interest rates are annualized in the figure. We observe several quantitative characteristics

in the impulse responses.

As a common feature, a central bank sets the nominal interest rate at zero for the first

several periods to bring overshooting of inflation rates and reduce real interest rates to

stimulate the economy in any case. Afterwards, the central bank increases the nominal

interest rate and the inflation rate returns to zero. This outcome is consistent with

10Note that Figure 1 does not show the whole feature of optimal monetary policy in the sense that

other state variables are set at zero.

11For example, Jung et al. (2001, 2005) assume at least a 2 percent one-time negative shock to make

the economy into a liquidity trap.
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Eggertsson and Woodford (2003a,b) and Jung et al. (2001, 2005) that show that the

zero interest rate policy continues even after the natural rate turns positive in the case

of the purely forward-looking economy, i.e., γ = 0.

The distinct feature of optimal monetary policy is early tightening with inflation

inertia increasing. As shown in Figure 2, when we assume γloss = 0.8, a timing to

terminate the zero interest rate policy is sufficiently earlier compared to the case without

inflation persistence. In an economy with inflation persistence, even in response to a

negative shock, the inflation rate registers a positive number for the initial period and

accelerates afterward.12 Qualitatively, two reasons are worth being mentioned. First,

the outcome results from a strong power of forward guidance by the commitment policy

as shown in Del Negro et al. (2012) and McKay et al. (2015). In particular, a central

bank should stabilize πt − γπt−1 rather than the inflation rate itself in an economy with

inflation persistence. Based on this behavior by the central bank, private agents expect

that a current high inflation will induce a high expected inflation rate in the future,

which accelerates inflation rates. Second, inflation persistence itself accelerates inflation

rates in an intrinsic way as the degree of inflation inertia increases. A high inflation

rate in the past contributes to increasing inflation rates in the future. These reasons

contribute to an early termination of the zero interest rate policy.

To quantitatively examine how these two elements affect the inflation dynamics and

the zero interest rate policy, we show a case of γloss = 0, given that other γ set to be

0.4 in Figure 3. In this case, the economy starts with initial deflation and inflation rates

remain low unlike the case of all γ = 0.4. This result is similar to the one of γ = 0 in

Figure 2. It reveals that the commitment to stabilizing πt−γlossπt−1 accelerates inflation

rates. To identify which of the two terms of the change in inflation rates in equation (11)

strengthens the effect of the commitment policy, we set only γloss of Etπt+1 − γlossπt to

be zero. Then, inflation rates become sufficiently subdued compared to the case of all

γ = 0.4, but remain high compared to the case of all γloss = 0. This implies that two

terms quantitatively function as accelerators of inflation rates. We also show a case of

12Initial inflation rates can be negative for small γ such as 0.1.
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setting γpc only in the hybrid Phillips curve to be zero in Figure 3. Even though a timing

to end the zero interest rate policy does not change, a central bank sets the policy rate

lower compared to the case of γ = 0.4. This is an effect of no inflation persistence in the

Phillips curve.

Specifically, Figure 4(a) confirms that a zero interest rate policy is terminated earlier,

as the persistence of inflation becomes larger. Figure 4(a-1) shows the time lag between a

period when a zero interest rate policy is terminated, Tr, and a period when the natural

rate becomes positive, Trn, for different degrees of inflation inertia. It is shown that early

tightening policy becomes stronger as inflation persistence becomes larger. In response

to an annual 8 percent negative shock, the timing of terminating a zero interest rate

policy is earlier by 2 quarters in the case of γ = 0.8 than that in the case of γ = 0. In

the case of γ = 0.8, a central bank starts to increase the interest rate in a timing when

the natural rate turns to be positive, i.e., Tr − Trn = 0. There is no history dependent

easing. Furthermore, the early tightening policy becomes more evident as the size of the

negative natural rate shocks becomes larger. When γ = 0.8 and there is an annual 12

percent negative shock, a central bank ends the zero interest rate policy even while the

natural rate remains negative since Tr−Trn = −1. This is called front-loaded tightening,

which is in stark contrast to history dependent easing.

In Figure 4(a-2), we investigate the time lag between a period when a zero interest

rate policy is terminated and a period when the inflation rate hits its peak, Tp, since

the inflation rate is one of the key variables to decide the exit from a zero interest rate

policy. Figure 4(a-2) shows that the time lag between a period when a zero interest rate

policy is terminated and a period when the inflation rate hits its peak becomes smaller

as inflation inertia becomes larger. In response to an annual 8 percent negative shock,

the timing of terminating a zero interest rate policy is earlier by 3 quarters in the case

of γ = 0.8 than that in the case of γ = 0 in relation to the peak inflation rate. In the

case of γ = 0.8, a central bank terminates the zero interest rate policy immediately after

the inflation rate hits its peak, i.e., Tr − Tp = 1. This result is a new finding against

Eggertsson and Woodford (2003a,b) and Jung et al. (2001, 2005) that show that a zero
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interest rate policy continues for certain periods even after the inflation rate hits its peak.

This tendency remains unchanged for larger negative natural rate shocks.

4.2.2 Sequential Shock

Eggertsson and Woodford (2003a,b) assume that negative annual 2 percent shocks con-

tinue to occur for several years with a certain probability to produce a prolonged liquidity

trap. In a similar vein, we assume a situation where negative natural rate shocks continue

for a certain period, which is a realistic assumption to replicate a liquidity trap.

Figure 4(b) shows a case where annual 2 percent negative shocks with persistence of

0.8 continue to occur for 10 quarters. The results are similar to those for one-time shock.

Both panels of 4(b-1) and 4(b-2) confirm that history dependence becomes weaker as

inflation inertia becomes larger. Inflation persistence induces a nontrivial implication for

the optimal exit from the zero interest rate. The timing to terminate a zero interest rate

policy is earlier by 4 quarters in the case of γ = 0.8 than that in the case of γ = 0 in

relation to the natural rate of interest and the peak inflation rate. With a high degree of

inflation persistence, a central bank increases its policy rate even before the natural rate

returns to zero, shown as Tr − Trn = −2. This shows the case where optimal monetary

policy implements the front-loaded tightening. Moreover, in the case of γ = 0.8, the zero

interest rate policy is terminated immediately after the inflation rate hits its peak, i.e.,

Tr − Tp = 1.

Even if we assume a different sequential shock, i.e., annual 4 percent negative shocks

with persistence of 0.8 continue to occur for 4 quarters, we can draw the same conclusion

that early tightening becomes more pronounced as inflation inertia becomes stronger.

5 Robustness Analyses and Applications

For robustness analyses and applications, we show four analyses: introducing deflationary

shock, weakening forward guidance, analysing a simple price-level targeting rule and an
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optimal interest rate rule.13

5.1 Deflation and Cost-push Shocks

In Figure 2 and 4, we cannot observe a clear deflation. In the actual economy, however,

inflation rates could deviate below the target of inflation rates. This prompts a question

as to how the economy behaves when the economy starts with deflation. To that end, we

assume a negative cost-push shock in the equation of the hybrid Phillips curve. Following

Adam and Billi (2006), by adding a temporary cost-push shock with σµ = 0.154 and no

persistence as well as a natural rate shock, we obtain the optimal response functions.

Figure 5 shows the impulse responses to an annual 8 percent one-time negative natural

rate shock with a persistence of 0.8 and annual 2 percent negative cost-push shocks

continuing for 5 quarters. The combination of the two negative shocks produces deflation

for the first several periods. Even in the case where the economy starts with deflation,

however, an early tightening policy is optimal. In particular, this characteristic becomes

more pronounced in relation to the inflation rate as shown in Figure 6(a) when inflation

inertia becomes larger. With the large degree of inflation persistence, the inflation rate

hits its peak sufficiently after a central bank begins to raise the policy rate, i.e., Tr−Tp =

−2 in the case of γ = 0.8.

Moreover, for an annual 12 percent one-time negative natural rate shock with a per-

sistence of 0.8 and annual 2 percent negative cost-push shocks continuing for 5 quarters,

Tr − Trn = −1 in the case of γ = 0.8, which confirms front-loaded tightening in the

conduct of optimal policy.

5.2 Weakening Forward Guidance

Del Negro et al. (2012) and McKay et al. (2015) point out that forward guidance by the

commitment policy is extremely powerful in a liquidity trap in that it drastically raises

the inflation rate and the output gap, which is called the forward guidance puzzle. As

13Regarding additional analyses for a case of low elasticity of the output gap to real interest rates and

a case of wage indexation, see Appendix D. Also see Sugo and Teranishi (2008) for additional analyses.
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shown in previous sections, one of our contributions is that in an economy with inflation

persistence, the power of forward guidance becomes stronger than one without inflation

persistence.

To solve the forward guidance puzzle, we assume a discounted IS curve in McKay

et al. (2015) as follows.

xt = δEtxt+1 − χ (it − Etπt+1 − rnt ) .

The discounted IS curve is different from the standard one since a discounting parameter

of δ is multiplied to the expected output gap. The effects of future real interest rates are

discounted, and the forward guidance should be less powerful. The first-order condition

of equation (7) is replaced by14

λxxt + φ1t − δβ−1φ1t−1 − κφ2t = 0,

In the numerical simulation to assess the effect of the discounted model, we set δ to

be 0.8, with other parameters unchanged. Compared to McKay et al. (2015) assuming

δ = 0.97, a smaller value for δ is necessary to make a clear difference from the results

with the standard IS curve.

Figure 7 shows impulse responses to an annual 8 percent one-time negative natural

rate shock with a persistence of 0.8 when γ = 0.4. We observe a deeper recession and

lower inflation rates, especially for the first few periods in the case of the discounted IS

curve. This results from reducing the power of forward guidance. On the other hand,

inflation rates accelerate after the initial first few periods due to inflation inertia and a

lower power of the forward guidance in monetary tightening.

Figure 6(a) shows Tr − Trn and Tr − Tp in the case of the discounted IS curve for

annual 8 and 12 percent one-time negative natural rate shocks with persistence of 0.8.

The outcome does not change even when the forward guidance puzzle is mitigated, that

14In the discounted IS curve model, the utility-based loss function consists of (πt − γπt−1)
2

and x2t

in a similar way as our model in Section 2, though weight parameters for these two elements in the loss

function should change.
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is, a zero interest rate policy is terminated earlier, as the persistence of inflation becomes

larger.

5.3 Failure of Simple Price-Level Targeting Rule

Several papers, such as Eggertsson and Woodford (2003a) in a closed economy and Fuji-

wara et al. (2013) in an open economy, reveal that a price-level targeting rule can mitigate

a liquidity trap and improve social welfare since the rule resembles the commitment pol-

icy and generates history dependent easing. The outcomes of our paper raise a question

of whether a price-level targeting rule still replicate features of the optimal commitment

policy in an economy with inflation persistence. A price-level targeting rule committing

to monetary easing to raise inflation to a high level can strengthen forward guidance

and induce an early tightening. Following Fujiwara et al. (2013), we assume a following

price-level targeting rule instead of optimal commitment policy in the simulation.

it = Max (0, ı̂pt ) ,

ı̂pt = ηp (lnPt − lnP ∗) ,

where ηp = 5 and lnP ∗ is the steady state value of a price level lnPt.

In Figure 8 that shows impulse responses to an annual 8 percent one-time negative

natural rate shock with a persistence of 0.8, we observe intuitive but totally different

outcomes from a common feature of optimal monetary policy in an economy with inflation

persistence. The periods of zero interest rate policy become longer as inflation persistence

becomes larger according to the dynamics of the price level. Specifically, Figure 6(b)

shows the time difference of Tr−Trn and Tr−Tp for different degrees of inflation inertia

against annual 8 and 12 percent one-time negative natural rate shocks with persistence

of 0.8. As shown in Figure 6(b-1), the timing of terminating a zero interest rate policy

is later by 1 quarter in the case of γ = 0.8 than that in the case of γ = 0.15 A price-level

15This result is robust to changes in the forms of price-level targeting rules such as:

ı̂pt = ηp (lnPt − lnP ∗) + ηxxt.
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targeting rule requires more history dependent easing when the natural rate shocks have

more persistent negative effects on the economy through a lag in the inflation rate. A

price-level targeting rule does not share the feature with optimal monetary policy in an

economy with inflation persistence. This tendency is more evident for larger negative

natural rate shocks.

5.4 Optimal Interest Rate Rule in a Liquidity Trap

We have considered a targeting rule to capture the property of the model. We can derive

an optimal interest rate rule as well. The prominent feature of the optimal interest rate

rule is that we directly observe the one-to-one relationship between the nominal interest

rate and the future, current, and past endogenous variables. As shown in Giannoni

and Woodford (2003) and Giannoni (2014), by introducing real balance into one of the

arguments of the household’s utility function, the second-order approximation of the

period loss function is given by

Lt = (πt − γπt−1)2 + λxx
2
t + λi (it − i∗)2 ,

where λi is nonnegative parameter and i∗ denotes the steady state interest rate. We

set λi = 0.077 from Woodford (2003) and i∗ = 0.875 from a value of the steady state

real interest rates. The first two terms are the same as the targeting rule model, while

the third term represents the central bank’s desire for interest rate stability. From the

viewpoint of the stability for interest rate, a central bank hesitates to adopt the zero

interest rate policy.

By solving the model using the modified loss function, we can derive a generalized

optimal interest rate rule, which is given by16

it = Max (0, ı̂t) ,

For 5 ≤ ηp ≤ 10 and 0 ≤ ηx ≤ 0.5, we have similar results.

16See Appendix C for the proof.
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Et {ψ1 (1− ψ2L) (1− ψ3L) (1− ψ4F ) (̂ıt − i∗)} =

 φ∗π [−βγEtπt+1 + (βγ2 + 1) πt − γπt−1]

+φ∗x [−βγEtxt+1 + (βγ + 1)xt − xt−1]

 ,

(12)

where ψ1ψ2ψ3 = β−2γ−1, ψ1ψ2 + ψ1ψ3 + ψ2ψ3 = (βγ)−1 [1 + β−1 (1 + βγ + κχ)], ψ1 +

ψ2 + ψ3 = (βγ)−1 (1 + βγ + γ), ψ4 = ψ−11 (ψ2 > ψ3), φ
∗
π ≡ κχ (βγλi)

−1, and φ∗x ≡

χλx (βγλi)
−1. L and F denote the lag and forward operators, respectively.

Note that it cannot take a negative value, while ı̂t can. ı̂t is interpreted as an indicator

variable that provides the information necessary to implement optimal monetary policy

under the zero lower bound on the nominal interest rate.

The monetary policy rule given by equation (12) includes both forward-looking and

backward-looking terms to determine the current value of ı̂t− i∗ and the nominal interest

rate. The lagged inflation rates in the loss function and in the hybrid Phillips curve induce

forward-looking terms in the rule as shown in equation (6).17

Without inflation inertia, i.e., γ = 0, the generalized optimal interest rate rule is

reduced to

it = Max (0, ı̂t) ,

(1− ψ5L) (1− ψ6L) (̂ıt − i∗) = φππt + φx (xt − xt−1) .

where ψ5 + ψ6 = 1 + β−1 + β−1κχ, ψ5ψ6 = β−1, φπ ≡ κχ (λi)
−1, and φx ≡ χλx (λi)

−1.

The optimal interest rate rule given γ = 0 includes only backward-looking terms of ı̂t− i∗

and xt, which induce history dependence. A central bank following the interest rate rule

seeks to prolong zero interest rate policy.

Figure 6(b) shows the time difference of Tr − Trn and Tr − Tp for different degrees of

inflation inertia against annual 8 and 12 percent one-time negative natural rate shocks

17Equation (12) is a generalization of the optimal interest rate rules shown in Giannoni and Woodford

(2003) that does not consider a nonnegativity constraint on the nominal interest rate. The rule given

by equation (12) achieves the same equilibrium as the Giannoni–Woodford rules when the zero lower

bound on the nominal interest rate does not bind.
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with persistence of 0.8. We affirm that even in the case of following interest rate rule

early tightening can be attained for the sufficient large inflation persistence for any size

of shocks. The interest rate rule shows front-loaded tightening for several cases in which

the central bank cares about being penalized on a deviation of the interest rate from its

steady state.

6 Concluding Remarks

If the economy exhibits inflation persistence and a liquidity trap, optimal monetary policy

is different from conventional wisdom, that is, history dependence is not a sufficient

condition for optimality.

The outcomes of this paper show that front-loaded tightening rather than the history

dependent easing is dominant in a liquidity trap when inflation exhibits a higher degree of

inflation persistence. The central bank should not wait for observed economic overheating

in escaping from a liquidity trap with inflation persistence. The central bank ends the

zero interest rate policy even while the natural rate is below zero and even before the

inflation rate hits its peak.

We consider only the commitment policy in this paper and the natural extension

is to check how the economy behaves when the central bank conducts a discretionary

policy. It would also be of interest to assume a global liquidity trap with inflation inertia.

Furthermore, inflation persistence due to an agent’s learning or state dependent pricing

instead of indexation could cause different outcomes.
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Table 1: Parameter Values

Parameters Values Explanation

β 0.9913 Discount Factor

χ 6.25 Elasticity of Output Gap to Real Interest Rate

κ 0.024 Elasticity of Inflation to Output Gap

α 0.66 Price Stickiness

λx 0.003 Weight for Output Gap

λi 0.077 Weight for Interest Rate

i∗ 0.875 Steady State Real Interest Rate

σr 0.2445 Standard Deviation of Natural Rate Shock

ρr 0.8 Persistence of Natural Rate Shock

σµ 0.154 Standard Deviation of Cost-push Shock
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a persistence 0.8.
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Figure 6: For Tr, Trn, and Tp, see Figure 4. In Panels (a-1) and (a-2), solid lines with

circles and squares denote the cases of annual −8 and −12 percent one-time natural rate

shocks with persistence of 0.8 accompanied with annual −2 percent cost push shocks
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cases of annual −8 and −12 percent one-time natural rate shocks with persistence of
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squares denote the cases of annual −8 and −12 percent one-time natural rate shocks
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and diamonds denote the cases of annual −8 and −12 percent one-time natural rate
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Appendix

A Expression in Inflation Rate

We follow the idea of Giannoni and Woodford (2003) to construct equations. We assume

χ > 0, κ > 0, 0 < β < 1, and 0 < γ ≤ 1. The equation (11) becomes:18

βγ (1−Ψ1L) (1−Ψ2L) (1−Ψ3L) Etφ1t+1

= −κβγ (Etπt+1 − γπt) + κ (πt − γπt−1)− βλxγEt4xt+1 + λx4xt.

As shown in Giannoni and Woodford (2003), we need one root with 0 < Ψ1 < 1 and two

roots outside the unit circle to obtain a solution in the model. The two roots are either

two real roots 1 < Ψ2 ≤ Ψ3 or a complex pair Ψ2,Ψ3 of which real parts are greater than

one. For any γ, it is the case that

− (1−Ψ1L)

(
1− Ψ2 + Ψ3

2
L

)
φ1t

=
1

2
(βγΨ3)

−1 Et

[(
1−Ψ−13 L−1

)−1
Vt

]
+

1

2
(βγΨ2)

−1 Et

[(
1−Ψ−12 L−1

)−1
Vt

]
,

where

Vt ≡ −κβγ (Etπt+1 − γπt) + κ (πt − γπt−1)− βλxγEt4xt+1 + λx4xt.

By deconstructing these equations, we have

φ1t − ρ1φ1t−1 − ρ24φ1t−2 = −1

2
(βγΨ3)

−1mI
t −

1

2
(βγΨ2)

−1mII
t ,

where

ρ1 = Ψ1 +
Ψ2 + Ψ3

2
−Ψ1

Ψ2 + Ψ3

2
> 1,

ρ2 = Ψ1
Ψ2 + Ψ3

2
> 0,

mI
t = Et

[(
1−Ψ−13 L−1

)−1
Vt

]
= κ

∞∑
i=−1

αIπ,iEtπt+i + λx

∞∑
i=−1

αIx,iEtxt+i,

18Thus, βγ = (βΨ1Ψ2Ψ3)
−1

, βγ (Ψ1 + Ψ2 + Ψ3) = 1+γ+βγ, and βγΨ1 = 1+γ−βγ (Ψ2 + Ψ3 − 1).
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mII
t = Et

[(
1−Ψ−12 L−1

)−1
Vt

]
= κ

∞∑
i=−1

αIIπ,iEtπt+i + λx

∞∑
i=−1

αIIx,iEtxt+i,

αIπ,−1 = −γ,

αIπ,0 = 1 + βγ2 − γΨ−13 ,

αIπ,i = −γβΨ−i+1
3 + Ψ−i3

(
1 + βγ2

)
−Ψ−i−13 γ, i = 1, 2, 3, ...,

αIx,−1 = −1,

αIx,0 = 1 + βγ −Ψ−13 ,

αIx,i = −γβΨ−i+1
3 + Ψ−i3 (1 + βγ)−Ψ−i−13 , i = 1, 2, 3, ...,

αIIπ,−1 = −γ,

αIIπ,0 = 1 + βγ2 − γΨ−12 ,

αIIπ,i = −γβΨ−i+1
2 + Ψ−i2

(
1 + βγ2

)
−Ψ−i−12 γ, i = 1, 2, 3, ...,

αIIx,−1 = −1,

αIIx,0 = 1 + βγ −Ψ−12 ,

αIIx,i = −γβΨ−i+1
2 + Ψ−i2 (1 + βγ)−Ψ−i−12 , i = 1, 2, 3, ....

Finally, we rearrange these equations as:

φ1t − ρ1φ1t−1 − ρ24φ1t−2

= Et

∞∑
i=0

απ,iπt+i + Et

∞∑
i=0

αx,ixt+i + απ,−1πt−1 + αx,−1xt−1,

where

απ,−1 =
κ

β

Ψ−12 + Ψ−13

2
,

αx,−1 =
λx
βγ

Ψ−12 + Ψ−13

2
,

απ,i = − κ

2βγ

(
Ψ−13 αIπ,i + Ψ−12 αIIπ,i

)
,

αx,i = − λx
2βγ

(
Ψ−13 αIx,i + Ψ−12 αIIx,i

)
.
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In particular, for a large γ, coefficients of απ,i and αx,i are positives for small i such

as -1, 1, 2, and 3. For the parameters in Table 1, when γ = 0.1 and γ = 0.8, (απ,−1, απ,0,

απ,1, απ,2, απ,3) is (0.009, −0.087, −0.041, −0.027, −0.018) and (0.015, −0.023, 0.002,

0.002, 0.002), respectively. When γ = 0.1 and γ = 0.8, (αx,−1, αx,0, αx,1, αx,2, αx,3) is

(0.011, −0.006, −0.002, −0.001, −0.001) and (0.002, −0.003, 0.0001, 0.0002, 0.0002),

respectively.

B Numerical Algorithm

We solve the central bank’s optimization problem by calculating the solution for equa-

tions (1) to (3) and equations (6) to (10). Since the zero lower bound (ZLB) introduces

nonlinearity in the model, we employ a numerical technique which approximates expected

variables.

First of all, we specify the grids for four state variables, rnt , φ1t−1, φ2t−1, and πt−1. Let

S1, S2, S3, and S4 denote the vector of grids for rnt , φ1t−1, φ2t−1, and πt−1, respectively. A

tensor of these grid vectors, defined as S ≡ S1⊗S2⊗S3⊗S4, determines the combination

of all grids. The size of S is N = n1×n2×n3×n4 = 25000. As for S1, we put relatively

larger number of grids near the kink point stemming from the ZLB with the aim of

mitigating the expected approximation error. The p.d.f. for the natural interest rate is

discretized by Gaussian Quadrature.

Notice that we can rewrite the complementarity conditions regarding the ZLB, equa-

tions (8) to (10), as

min(max(χφ1t,−it),∞) = 0. (13)

In order to employ an algorithmic solution that is designed basically for differentiable

functions, we approximate equation (13) by a semismooth function, so called Fischer’s

equation:

ψ−(ψ+(χφ1t,−it),∞) = 0,

where ψ±(u, v) = u+ v ±
√
u2 + v2 (c.f., Miranda and Fackler (2004)).
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Let ht ≡ (xt, πt, φ2t) denote the vector of forward-looking variables at time t. We

need to obtain ht, it, and φ1t by solving the central bank’s optimization problem, taking

state variables as given. In order to calculate the expectations terms, we approximate

the time-invariant function for forward-looking variables, h, by a collocation method.

Our solution procedure is summarized as follows:

1. Given a particular set of grids for state variables, denoted by Sj, and the initial

guess of the functional form for h(Sj), denoted by h0(Sj), compute h1(Sj), it, and

φ1,t as a solution for equations (1) to (3) and equations (6) to (10). A cubic-spline

function is used to interpolate h(Sj).

2. Repeat step 1 for all j = 1, . . . N .

3. Stop if ‖h1 − h0‖∞/‖h0‖∞ < 1.5× 10−6. Otherwise, update the initial functional

form as h0 ≡ h1 and go to step 1.

Euler residuals from first order conditions are order of 10−3, which is concentrated mostly

around the zero lower bound. Computation time is 8 hours for each γ. The software is

Matlab, CPU is Core i7 with 2.90GHz, and Memory is 16GB.

C Proof of Optimal Interest Rate Rule

In this case, we have following first order conditions.

−βγEtπt+1+
(
βγ2 + 1

)
πt−γπt−1−β−1χφ1t−1−βγEtφ2t+1+(βγ + 1)φ2t−φ2t−1 = 0, (14)

λxxt + φ1t − β−1φ1t−1 − κφ2t = 0, (15)

λi (it − i∗) + χφ1t − φ3t = 0, (16)

itφ3t = 0, (17)

φ3t ≥ 0, (18)

it ≥ 0. (19)
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where φ1, φ2, and φ3 represent the Lagrange multipliers associated with the IS constraint,

the Phillips curve constraint, and the nominal interest rate constraint, respectively.

To prove the optimal interest rate rule, we make use of the Kuhn–Tucker conditions.

When the zero lower bound may be binding, we have the following equation from equation

(15):

φ2t = κ−1(λxxt + φ1t − β−1φ1t−1). (20)

By substituting equation (20) into equation (14), we obtain:

−βγEtφ1t+1 + (βγ + γ + 1)φ1t − (1 + γ + β−1(1 + κχ))φ1t−1 + β−1φ1t−2

= −κ(−βγEtπt+1+(βγ2+1)πt−γπt−1)−λx(−βγEtxt+1+(βγ+1)xt−xt−1),

⇒ Et {ψ1(1− ψ2L)(1− ψ3L)(1− ψ4F )φ∗1t} =

= φ∗π(−βγEtπt+1+(βγ2+1)πt−γπt−1)+φ∗x(−βγEtxt+1+(βγ+1)xt−xt−1),

(21)

where φ∗1t = −χλ−1i φ1t, φ
∗
π ≡ κχ(βγλi)

−1, φ∗x ≡ χλx(βγλi)
−1, ψ1ψ2ψ3 = β−2γ−1, ψ1ψ2 +

ψ1ψ3 + ψ2ψ3 = (βγ)−1(1 + β−1(1 + βγ + κχ)), ψ1 + ψ2 + ψ3 = (βγ)−1(1 + βγ + γ)

and ψ4 = ψ−11 (ψ2 > ψ3). We note that equation (20) is valid with and without the

zero lower bound in the system of equations given by equation (14) through equation

(19).19 Giannoni and Woodford (2003) show the optimal interest rate rule without the

zero lower bound:

Et {ψ1(1− ψ2L)(1− ψ3L)(1− ψ4F )(it − i∗)} =

φ∗π(−βγEtπt+1 + (βγ2 + 1)πt−γπt−1) +φ∗x(−βγEtxt+1 + (βγ+ 1)xt−xt−1).

(22)

19If the zero lower bound is not binding, from the Kuhn–Tucker conditions equation (16), we can

substitute it − i∗ = φ∗1t into equation (20), and we obtain the optimal interest rate rule given by

equation (22). If the zero lower bound is binding, we can set the optimal interest rates by equation (20)

and equation (16). Therefore, equation (20) is valid with and without the zero lower bound.
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From equation (20) and equation (22), we obtain:

it = φ∗1t + i∗. (23)

This relation is true only when the zero lower bound does not bind if it cannot take

a negative value.20 In the case where the zero lower bound binds, the Kuhn–Tucker

condition equation (16) also holds with it = 0. Then it must be the case that21

φ3t = −λi(φ∗1t + i∗).

This equation implies that the zero interest rate policy will be terminated when φ∗1t + i∗

becomes positive in equation (21) (or equivalently, the zero interest rate policy will be

implemented while φ∗1t + i∗ takes a negative value). From equation (23), we can confirm

if it could take a negative value in equation (22). Therefore, equation (23) always holds

with and without the zero lower bound and it becomes positive in equation (22) at the

exact same time as that of terminating the zero interest rate policy, which is indicated

by φ∗1t in equation (21). The above argument can be summarized in the following two

equations by redefining ı̂t − i∗ = φ∗1t, where ı̂t can take negative values:

it = Max(0, ı̂t),

Et {ψ1(1− ψ2L)(1− ψ3L)(1− ψ4F )(̂ıt − i∗)} =

φ∗π(−βγEtπt+1 + (βγ2 + 1)πt−γπt−1) +φ∗x(−βγEtxt+1 + (βγ+ 1)xt−xt−1).

Notice that ı̂t can even take a negative value, while it cannot under the zero lower bound

on nominal interest rates. The above argument completes the proof of the optimal

interest rate rule.

20This is because φ1t takes a negative value, but it cannot.

21If we substitute φ3t = 0 into equation (16), then we have equation (23) because

λi(it − i∗) + χφ1t = 0⇔ it − i∗ = −λ−1i χφ1t = φ∗1t.
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D Additional Analyses

In implementing stochastic simulations, it is not easy to secure convergence, which con-

strains a variety of simulations. In this appendix, we assume deterministic shocks and

provide supplemental analyses.

D.1 Low Elasticity of the Output Gap to Real Interest Rates

In analyses of the zero interest rate policy, some papers such as Eggertsson and Woodford

(2003a,b), assume a low elasticity of the output gap to real interest rates, which reduces

the effectiveness of monetary policy. To check the robustness of the early tightening, we

change χ from 6.25 (benchmark) to three alternatives, i.e., χ = 3, χ = 1, and χ = 0.5.

Christiano et al. (2005) assume 1 and Eggertsson and Woodford (2003a,b) assume 0.5

for χ.22 In this simulation, effects of the natural rate shocks on the output gap decrease

due to smaller χ in the IS curve. Thus, we adjust size of the natural rate shocks to keep

the same size shocks on the output gap.

We assume a case where annual 3 percent negative natural rate shocks with persis-

tence of 0.8 for 10 quarters when χ = 3. As shown in Figure A1, an early tightening

becomes more evident as inflation inertia becomes larger. The timing of terminating a

zero interest rate policy is earlier by 7 quarters in the case of γ = 0.8 than that in the

case of γ = 0 in relation to the natural rate of interest. Optimal monetary policy is fea-

tured by front-loaded tightening for sufficiently large γ. In the case of χ = 1, we observe

similar outcomes to annual 3 percent negative natural rate shocks with persistence of

0.8 for 10 quarters. With a high degree of inflation persistence, a central bank increases

its policy rate when the natural rate shock returns to zero, i.e., Tr − Trn = 0. Thus,

there is no history dependent easing. For χ = 0.5, we assume annual 2 percent negative

natural rate shocks with the persistence of 0.8 for 10 quarters since simulation does not

converge for larger shocks. Even in this case, an early tightening becomes clearer as

22When we assume a different χ, λx ≡ (1−α)(1−αβ)
α

χ−1+ω
1+ωθ also changes, where θ = 7.88 is the elasticity

of substitution across goods and ω = 0.47 is the elasticity of the desired real wage to the quantity of

labor demanded as shown in Woodford (2003).
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inflation inertia becomes larger. The timing of terminating a zero interest rate policy is

earlier by 6 quarters in the case of γ = 0.8 than that in the case of γ = 0 in relation to

the natural rate of interest.

D.2 Wage Indexation

As in the case of price persistence, we borrow a model of wage indexation from Woodford

(2003). The period loss function, which is derived by approximating the utility function,

is given by

Lt = λp(πt − γpπt−1)2 + λw(πwt − γwπt−1)2 + λxx
2
t , (24)

where πwt denotes the rate of the change in the nominal wage and λw, γp, and γw are

nonnegative parameters satisfying λw > 0, 0 ≤ γp ≤ 1, and 0 ≤ γw ≤ 1, respectively. In

addition to the IS curve given by equation (1) and the nonnegativity constraint of the

nominal interest rate, the system of the model is given by

πt − γpπt−1 = κpxt + ξp(wt − wnt ) + β(Etπt+1 − γpπt), (25)

πwt − γwπt−1 = κwxt + ξw(wnt − wt) + β(Etπ
w
t+1 − γwπt), (26)

wt = wt−1 + πwt − πt, (27)

where wt and wnt denote the real wage and the natural real wage, respectively. λp, ξp,

ξw, κp, and κw are nonnegative parameters satisfying λp > 0, ξp > 0, ξw > 0, κp > 0,

and κw > 0, respectively.

Intertemporal minimization of equation (24) as in equation (4) subject to equations

(1), (10), and (25) – (27) with the nonnegativity constraint on the nominal interest rate

yields following first order conditions.

λp(πt − γpπt−1)− λpβγp(Etπt+1 − γpπt)− λwβγw(Etπ
w
t+1 − γwπt)

− χ

β
φ1t−1 − φ2t−1 + (γpβ + 1)φ2t − γpβEtφ2t+1 + γwβφ3t − γwβEtφ3t+1 + φ4t = 0,

λw(πwt − γwπt−1)− φ3t−1 + φ3t − φ4t = 0,

42



λxxt −
1

β
φ1t−1 + φ1t − κpφ2t − κwφ3t = 0,

−ξpφ2t + ξwφ3t − βEtφ4t+1 + φ4t = 0,

itφ1t = 0,

φ1t ≥ 0,

it ≥ 0,

where φ1t, φ2t, φ3t, and φ4t are Lagrange multipliers.

We set ξw = ξp = 0.055, κw = κp = 0.024, λw = λp = 0.50, and λx = 0.048 (λx is

annual) following Giannoni and Woodford (2003) and set γp = 0 to clarify the effect of

γw. Figure A2 show simulation outcomes. In a case where annual 3 percent negative

natural rate shocks with persistence of 0.8 for 10 quarters, the timing of terminating a

zero interest rate policy is earlier by 2 quarters in the case of γ = 0.8 than that in the case

of γ = 0 in response to a shock to the natural rate of interest. A small difference in the

timing of terminating a zero interest rate policy is due to two objectives for stabilizing

goods inflation, i.e., πt−γpπt−1, and wage inflation, i.e., πwt −γwπt−1. To make difference

clearer, we need a larger weight for wage inflation compared to goods inflation in the loss

function and larger shocks. In a case of λw = 5 and annual 4 percent negative natural

rate shocks with persistence of 0.8 for 10 quarters, the timing of terminating a zero

interest rate policy is earlier by 6 quarters in the case of γ = 0.8 than that in the case of

γ = 0 in response to a shock to the natural rate of interest.23 Moreover, a central bank

terminates the zero interest rate policy before the natural rate turns positive, that is,

Tr − Trn = −1. We observe front-loaded tightening even in the case of wage indexation.

23A larger weight for wage inflation is supported by Erceg, C., Henderson, D. and Levin, A. Optimal

monetary policy with staggered wage and price contracts. Journal of Monetary Economics, vol. 46(2),

pp. 281-313, 2000.
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Figure A1: Tr denotes a time when the zero interest rate policy ends, Trn denotes a

time when the natural rate returns to zero, and Tp denotes a time when inflation hits its

peak. Panels (a) and (b) denote the cases of annual −3 percent natural rate shocks with

persistence of 0.8 for 10 quarters when χ = 3 and χ = 1, and denote the case of annual

−2 percent natural rate shocks with persistence of 0.8 for 10 quarters when χ = 0.5.
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Figure A2: Tr denotes a time when the zero interest rate policy ends, Trn denotes a time

when the natural rate returns to zero, and Tp denotes a time when inflation hits its peak.

Panels (a) and (b) denote the cases of annual −3 and −4 percent natural rate shocks

with persistence of 0.8 for 10 quarters in the model with wage indexation.
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