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Abstract

This work develops and estimates a three-factor term structure model with ex-
plicit sentiment factors in a period including the global financial crisis, where market
confidence was said to erode considerably. It utilizes a large text data of real time,
relatively high-frequency market news and takes account of the difficulties in incor-
porating market sentiment into the models. To the best of our knowledge, this is
the first attempt to use this category of data in term-structure models.

Although market sentiment or market confidence is often regarded as an impor-
tant driver of asset markets, it is not explicitly incorporated in traditional empirical
factor models for daily yield curve data because they are unobservable. To overcome
this problem, we use a text mining approach to generate observable variables which
are driven by otherwise unobservable sentiment factors. Then, applying the Monte
Carlo filter as a filtering method in a state space Bayesian filtering approach, we
estimate the dynamic stochastic structure of these latent factors from observable
variables driven by these latent variables.

As a result, the three-factor model with text mining is able to distinguish (1)
a spread-steepening factor which is driven by pessimists’ view and explaining the
spreads related to ultra-long term yields from (2) a spread-flattening factor which is
driven by optimists’ view and influencing the long and medium term spreads. Also,
the three-factor model with text mining has better fitting to the observed yields
than the model without text mining.

Moreover, we collect market participants’ views about specific spreads in the
term structure and find that the movement of the identified sentiment factors are
consistent with the market participants’ views, and thus market sentiment.

∗The views expressed in this paper are our own and do not necessarily reflect the institutions we
are affiliated with. Financial supports from CARF at the University of Tokyo and JSPS KAKEN(S)
#18H05217 are gratefully acknowledged. We are very grateful to Mr. Takami Tokioka at GCI As-
set Management, Inc. and Prof. Taiga Satio at University of Tokyo for their precious comments and
suggestions.
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1 Introduction and Summary

Although “market sentiment” is often regarded as an important driver of asset markets,1

it is not explicitly incorporated in traditional empirical factor models for the term struc-
ture of interest rates. This is because (1) it is not clear what sentiment factors mean, and
moreover, (2) there are scant observations, if any, about these sentiment factors. This
work formulates and estimates a factor model with explicit sentiment factors in the pe-
riod including the global financial crisis, in which uncertainty was said to be heightened
considerably. It utilizes a large text data of real-time, relatively high-frequency market
news and takes account of the difficulties (1) and (2). To the best of our knowledge, this
is the first attempt to use this category of data in term-structure models.

With respect to (1) [what sentiment means], we regard the “sentiment” of market
participants as their attitude toward changes in economic conditions with which they are
concerned. We consider two types: pessimists (taking the change as negative so as to
lower the short rate) and optimists (taking it as positive to raise the rate). Pessimists and
optimists are different with respect to their concerns. As time passes, initial sentiment im-
pacts are eventually dying out. Thus, the pessimist factor initially reduces the short rate,
and then increases it in the future. This implies the pessimist factor is spread-steepening.
Symmetrically, the optimist factor is spread-flattening. This argument suggests the fol-
lowing three-factor model of term structure: A spread-steepening factor which is negative
quadratic-Gaussian with zero-mean reversion (assuring initial negative impacts eventu-
ally dying out), a spread-flattening factor which is positive quadratic-Gaussian with zero
mean-reversion (assuring initial positive impacts eventually dying out), and a level factor
which is traditional Gaussian.2 Appendix B contains an intuitive version of this theoretical
model.

With respect to (2) [un-observability of sentiment factors], we use a text mining ap-
proach to generate “observable variables” which are driven by otherwise unobservable
particular sentiment factors. To start with, we have pointed out that pessimists and
optimists may have different concerns: Optimists may be concerned with the state of
the current business cycle and its effect on interest rates, while pessimists may be more
concerned with various long-term risks such as fiscal sustainability and uncertainty about
the future of global economy and their effects on the rates. In this example, the pes-
simist spread-steepening factor is likely correlated with the frequency of news about what
pessimists are concerned: fiscal sustainability and global risks. Similarly, the optimist
spread-flattening factor and the frequency of news about business-cycle events may cor-
relate to a high degree. The above argument indicates that the frequency of the relevant
news can be considered as the observable variable driven by a particular sentiment factor.

To identify relevant news for a particular sentiment factor, we employ a parsimonious
approach of finding one key-word group highly correlated with (the preliminary estimate
of) the factor. Comprehensive text data of real-time financial news reports are collected
from the beginning of 2008 to the end of 2011 (including Global Financial Crisis and

1For example, from the beginning of the Global Financial Crisis, some policymakers at central banks
clearly identified the importance of sentiment factors or market confidence on asset markets’ pricing and
trading. See Nishimura (2008).

2In a companion paper now in progress, Nishimura, Saito and Takahashi develop theoretical foundation
of this empirical model based on the theory of fundamental uncertainty called Knightian uncertainty. See
Nishimura and Ozaki (2017)for the formulation of pessimism and optimism under Knightian uncertainty.
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European Sovereign Debt Crisis) from Reuters JAPAN, which makes them available online
for free access. Firstly, we identify words which appear frequently in the news and seem
relevant to the bond market. Secondly, we calculate the frequency of a combination
(group) of these key words. Finally, we select a key word group which is economically
meaningful and strongly positively correlated to the preliminary estimate (without text
mining) of the unobserved sentiment factor. Then,

• For the pessimist spread-steepening factor, the selected key word group is “fiscal
conditions (zaisei)” and “foreign (gaikoku)”.

• For the optimist spread–flattening factor: the selected key word group is “business
conditions (keiki)” and “slowdown (gensoku)”.

Thus, we have two new observable variables, which are the appearance frequency of the
selected key words, in addition to traditional observable variables, which are observed
interest rates.

The dynamic stochastic structure of these latent factors (pessimist spread-steepening,
optimist spread-flattening and level) are estimated from traditional and new observable
variables (traditional: observed interest rates and new: word frequencies), in a state space
Bayesian filtering approach. Specifically, the Monte Carlo filter (as a particle filtering
method) is used. 3

Then, we obtain the following main results:

1. The three-factor model with text mining is able to distinguish a factor explaining
the ultra-long4 and long term spreads (e.g. 20-10 year) from a factor influencing
the long and medium term spreads (e.g. 10-2 year), in contrast to the fact that
they are hard to distinguish in the model without text mining. Moreover, RMSEs
(square-root of the mean square errors) of the former (with text mining) are smaller
than the latter (without it).

2. The factor influencing the ultra-long and long term spreads is a pessimist spread-
steepening factor which concerns news containing “fiscal conditions” and “foreign”,
while the factor explaining the long - medium term spread is an optimist spread-
flattening factor which concerns news containing “business conditions” and “slow
down”.

3. Thus, we are able to identify two spread-determining factors influencing different
parts of the term structure of interest rates: optimist spread-flattening on the long
and medium term spreads (e.g. 10-2 year) and pessimist spread-steepening on the
ultra-long and long term spreads (e.g. 20-10 year).

To assess the results, we collect market participants’ views about specific spreads in
the term structure. We find that the movement of the identified sentiment factors are
consistent with the market participants’ views, and thus market sentiment.

3The Monte Carlo method is proposed by Kitagawa (1996). See Takahashi and Sato (2001) for its
application to estimation of a term structure model. See also Fukui et al. (2017) for its application in
other fields.

4In Japan, government bonds of maturity longer than ten years are called “super-long term” bonds,
while in other countries they are often called “ultra-long term” bonds. In the following, we use “ultra-
long”, and put “super” in parentheses if necessary.
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There are several studies in the related literature utilizing financial news.5 In the
behavioral finance literature, Gotthelf and Uhl (2018) uses a news-sentiment variable
in the regression analysis, rather than a dynamic factor analysis of this paper in the
term structure of interest rates. Their sentiment variable is based on Thomson Reuters
News Analytics’s sentiment measures about political, debt and monetary news, while
the dependent variables are 1 & 3-month and 1,2,3,5,10,30-year U.S. treasury yields.6

Thomson Reuters’ variables are constructed from the assessment of particular news as
positive, neutral or negative by their own text mining procedure, and do not focus on
what set of economic conditions the market participants focus.

In the macro-finance literature, Bauer (2015) investigates impacts of macro economic
news on yield curves with a simple no-arbitrage model by using daily interest rate futures
and treasury yields data. He uses news data to classify each day to different “regimes”
of the model according to the type of the news released on the day. He does not utilize
news data to identify a dynamic (sentiment or non-sentiment) factor as we do.

The organization of the paper is as follows: After the next section (Section 2) presents
an overview of our model, Section 3 explains a preliminary analysis that consists of es-
timation of two-factor term structure models, a text mining of financial and economic
Japanese news provided by Reuters Japan from January 1st 2008 to December 31th 2011
(4 years), and selection of two-word sets relevant with steepening and flattening factors in
the term structure models. Section 4 shows and discusses our main result of simultaneous
estimation of a three-factor model together with two-word sets frequencies. Concluding
remarks are in Section 5. Appendix A, B and C briefly explain a Monte Carlo filter al-
gorithm used in the empirical analysis, interest rate models with market sentiment which
may be considered as theoretical foundation of the models in this paper, and a new esti-
mation method for trends and correlations embedded in noisy time series data utilized in
our text mining analysis, respectively.

2 Outline of Model

This section explains the outline of our model. Following the argument in Introduction,
we adopt as a term structure model a three-factor Gaussian Quadratic-Gaussian interest
rate model,7 where an instantaneous short rate is expressed as a sum of independent
Gaussian (x3) and (∓) Quadratic-Gaussian (x21 & x22) factors:

rt = c1x
2
1,t + c2x

2
2,t + x3,t; 0 > c1 ≥ −

(
κ1
σ1

)2

, c2 > 0, (1)

Here, we assume that under a risk-neutral probability measure Q, xj,t (j = 1, 2) follow
Gaussian with zero mean-reversion processes, and x3,t does a Gaussian with no mean

5For surveys on applications of text mining in general to finance that include predictions of stock
prices and foreign exchanges, see Kumar and Ravi (2016) and Nassirtoussi et al. (2014), for instance.

6They argue their news sentiment factor is distinct from the three yield curve factors such as level,
slope, and curvature as well as from fundamental macroeconomic variables. However, although the t-
statistics values for the news sentiment factor’s coefficients look significant for the yields up to the 3-5
year maturities, the adjusted R2s in their regression analyses are low: 0.02–0.17 with only the news
sentiment factor as an explanatory variable, and 0.10–0.25 with macro variables (nonfarm payrolls, CPI,
ISM Manufacturing Index) and the 10-2 year spread in addition to the news sentiment variable.

7See Appendix B.2 for a Quadratic-Gaussian model.
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reversion process, which are the solutions of the stochastic differential equations (SDEs)
as follows: given xj,0(j = 1, 2, 3),

dxj,t = −κjxj,tdt+ σx,jdB
Q
j,t; κj > 0, (j = 1, 2) (2)

dx3,t = λdt+ σx,3dB
Q
3,t,

where κj(j = 1, 2), λ, σx,j(j = 1, 2, 3) are positive constants, and BQ
j,t(j = 1, 2, 3) are

independent Brownian motions under a risk-neutral probability measure Q. We remark

that a condition c1 ≥ −
(

κ1

σ1

)2
(σ1 ≡

√
2σx,1) is necessary for a zero coupon bond price to

be well-defined.
We also suppose that each risk-premium associated with xj(j = 1, 2) is zero, while

the one with x3 is λ. That is, under the physical probability measure P with independent
Brownian motions BP

j (j = 1, 2, 3), xj(j = 1, 2, 3) are the solutions to the SDEs: given
xj,0(j = 1, 2, 3),

dxj,t = −κjxj,tdt+ σx,jdB
P
j,t; κj > 0, (j = 1, 2) (3)

dx3,t = σx,3dB
P
3,t,

which are the basis of system equations in a state space model used for our empirical
analysis in the following sections.

Moreover, we note that it is well-known that the factor x3 is expected to stand for an
overall yield curve level.8 So, we call x3 the level factor. In contrast, we see that as x2j,t
(j = 1, 2) have zero mean-reversion levels, c1x

2
1 with c1 < 0 ( c2x

2
2 with c2 > 0) has a

steepening (flattening) effect on a yield curve. Thus we call x1 and x
2
1 the steepening factor

and x2 and x22 the flattening factor. In particular, x21 and x22 will turn out to be crucial
to select meaningful word sets from those obtained through text mining introduced in
Section 3.2, since steepening and flattening of a yield curve reflect and are closely related
to market participants’ different views for the current and future economic conditions.

Then, we obtain time-t zero coupon bond price and zero yield with maturity τ , denoted
respectively by Pt(τ) and Yt(τ) as follows

9:

Pt(τ) = EQ
t

[
e−

∫ t+τ
t rudu

]
(4)

= exp [−τ{X1,t(τ) +X2,t(τ) +X3,t(τ)}] ,
Yt(τ) = X1,t(τ) +X2,t(τ) +X3,t(τ), (5)

where

Xj,t(τ) =
−1

τ

[
Aj(τ) + Cj(τ)x

2
j,t

]
, (j = 1, 2) (6)

X3,t(τ) = x3,t +
λ

2
τ − σ2

3

6
τ 2, (σ3 ≡ σx,3). (7)

8For example, see Section 6 in Hull and White (1990) and Section 4.2 in Nakano et al.(2018).
9See Appendix B.2 in this paper and Appendix in Nakano et al.(2018) for outlines of the derivation

of (6) and (7), respectively.
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Here, with c1 ∈ [−κ21/σ2
1, 0), c2 > 0 and σj ≡

√
2σx,j (j = 1, 2), Cj(τ) (j = 1, 2) are

defined as

Cj(τ) = C0j +
1

zj(τ)
, (8)

C0j =
κj +

√
κ2j + cjσ2

j

σ2
j

, (9)

zj(τ) =
σ2
j

αj

− eαjτ

(
1

C0j

+
σ2
j

αj

)
, (10)

αj = 2(κj − σ2
jC0j), (11)

and Aj(τ), j = 1, 2 as

Aj(τ) =
σ2
j

2

∫ τ

0

Cj(s)ds =
1

2

{(
κj +

αj

2

)
τ + ln

(1 + C2j)

(1 + C2jeαjτ )

}
(12)

with C2j =
αj

σ2
j
zj(0)− 1 and zj(0) =

−1
C0j

.

Given the three-factor model, our aim is to obtain (two-)word sets meaningful in terms
of economics and finance, which are able to stand for factors embedded in our interest rate
model. To attain such an objective, we construct and estimate a state space model with
state equations for the factors xj(j = 1, 2, 3) and observation equations for zero yields
Yt(τ) and two-word sets’ frequencies relevant with steepening factor (x21) and flattening
factor (x22), of which details will be given in Section 4.

Before implementing simultaneous estimation of the three factors and relevant two-
word sets, we adopt a preliminary analysis that takes the following steps of which details
will be shown in Section 3:

1. Estimate factors in the term structure model with observation equations only for
the zero yields in our state space model (i.e., without text mining).

2. Find meaningful two-word sets based on a text mining and a regression analysis,
whose frequencies have high correlations with the estimated factors in Step 1.

We firstly remark that, in Step 1 above, we are unable to use our three-factor model,
because the estimation of the three-factor model without text mining turns out to be
unstable, (i.e. different seeds in Monte Carlo simulations produce quite different state
estimates of xj (j=1,2)), mainly due to high negative correlation between the estimated
steepening and flattening factors. In fact, we will see in Section 3.1 that the estimated
correlation is close to −1 in the two factor models introduced below. Thus, instead of the
three-factor, we consider two-factor models with steepening & level factors (x1&x3) and
flattening & level factors (x2&x3) for a preliminary analysis in the next section. More
concretely, setting c1 ̸= 0 and c2 = 0 or c1 = 0 and c2 ̸= 0 in the equation (1) provide
two-factor models with

rt = c1x
2
1,t + x3,t; 0 > c1 ≥ −

(
κ1
σ1

)2

, (13)
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or

rt = c2x
2
2,t + x3,t; c2 > 0, (14)

respectively.
Hereafter, let us call the model with instantaneous short rate (13) as “two-factor

Gaussian minus Quadratic-Gaussian” that stands for steepening & level factors in the
term structure of interest rates, and the model with (14) as “two-factor Gaussian plus
Quadratic-Gaussian” that represents flattening & level factors. The corresponding zero
yield with term τ is given by

Yt(τ) = X1,t(τ) +X3,t(τ) (15)

for “two-factor Gaussian minus Quadratic-Gaussian”, and

Yt(τ) = X2,t(τ) +X3,t(τ) (16)

for “two-factor Gaussian plus Quadratic-Gaussian”, where Xj,t(τ)(j = 1, 2) and X3,t(τ)
are defined as the equations (6) and (7), respectively.

3 Preliminary Analysis

3.1 Estimation of Two-factor Term Structure Model

This subsection shows the result for estimation of our two-factor term structure model
by using daily data of the Japanese Government Bond (JGB) zero yields during January
4th 2008 and December 30th 2011, where the zero yields are estimated from par rate
data available on the website of Ministry of Finance (MOF) Japan, with a cubic spline
and a bootstrap method.10 Particularly, we apply a state space model, whose system and
observation equations are described as follows:

(State space model for two-factor term structure model)

• (“two-factor Gaussian minus Quadratic-Gaussian”)
(System equation)

x1,t = e−κ1∆tx1,t−∆t +
σ1√
2

√
1− e−2κ1∆t

2κ1
ϵ1,t, (17)

x3,t = x3,t−∆t + σ3
√
∆tϵ3,t, (∆t = 1/250), (18)

(Observation equation)

Yt(τ) = X1,t(τ) +X3,t(τ) + et,τ (τ = 2, 5, 10, 20, 30 (year)) (19)

10See, for example, Nakano et al. (2018) for the details.
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• (“two-factor Gaussian plus Quadratic-Gaussian”)
(System equation)

x2,t = e−κ2∆tx2,t−∆t +
σ2√
2

√
1− e−2κ2∆t

2κ2
ϵ2,t, (20)

x3,t = x3,t−∆t + σ3
√
∆tϵ3,t, (∆t = 1/250), (21)

(Observation equation)

Yt(τ) = X2,t(τ) +X3,t(τ) + et,τ (τ = 2, 5, 10, 20, 30 (year)) (22)

Here, with Aj(τ) and Cj(τ) defined by (8) and (12),

Xj,t(τ) =
−1

τ

[
Aj(τ) + Cj(τ)x

2
j,t

]
, (j = 1, 2) (23)

X3,t(τ) = x3,t +
λ

2
τ − σ2

3

6
τ 2. (24)

Also, t = 0 stands for Jan. 4th 2008, and the initial xj,−∆t j = 1, 2, 3 are determined by
realization of random variables following normal distributions whose means and variances
are determined so that the likelihood in estimation becomes improved. Moreover, we
assume ϵi,t ∼ i.i.d. N(0, 1), i = 1, 2, 3 and et,j ∼ i.i.d. N(0, γ2j ), (j = 2, 5, 10, 20, 30). See
　 Section 4.1　 for the details of our estimation procedure including how to set γ2j .

The estimation result is listed below: Table 1 gives the estimated parameters. Figure
1 shows the time series of the estimated factors. Figure 2 presents the time series of
the observed & estimated zero yields, and Table 2 provides RMSEs (square-root of mean
squared errors) of our zero yields’ estimates.

“two-factor Gaussian “two-factor Gaussian
minus Quadratic-Gaussian” plus Quadratic-Gaussian”

κ1 0.1290 –
σ1 0.0402 –
κ2 – 0.1290
σ2 – 0.0253
λ 0.0042 0.0040
σ3 0.0149 0.0147
c1 -4.230 –
c2 – 2.120

log-likelihood 16631.05 17077.11

Table 1: Estimates of parameters: two factor model
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Figure 1: Estimated factors of two factor models
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Figure 2: Observed zero rates (solid lines) and estimated zero rates (dot lines) by two-
factor models

2y 5y 10y 20y 30y total average
“two-factor Gaussian minus Quadratic-Gaussian” 4.52 9.00 5.35 3.57 5.31 5.85
“two-factor Gaussian plus Quadratic-Gaussian” 4.54 8.94 5.27 3.54 5.31 5.82

Table 2: Square-root of mean squared errors (RMSEs) of estimated yields(basis
points(bps)): two factor model

In Figure 1, we observe that the estimates of the level factor x3 have very similar shapes
in both “two-factor Gaussian minus Quadratic-Gaussian” and “two-factor Gaussian plus
Quadratic-Gaussian” models. (In fact, the correlation is close to one (more than 0.99).)
In each model, the risk premium (λ) is positive, that is a term premium exists, which is
about 40 basis points (bps) per year, and the volatility (σ3) is around 150 bps.
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However, the mean level of x3 is positive for “two-factor Gaussian minus Quadratic-
Gaussian” and negative for “two-factor Gaussian plus Quadratic-Gaussian”, because given
the same observed yields, x21 (x22) affect the interest rates, negatively (positively). (i.e.
c1 < 0 in (13) and c2 > 0 in (14)).

As for steepening and flattening factors ((x1 & x2 respectively), we first note that the
x21’s level is about a third of the x22’s level, while the absolute value of c1 (|c1| = 4.23)
is around twice that of c2 (|c2| = c2 = 2.12). Hence, the flattening factor x22 has larger
(about 1.4 times absolute) effects on the interest rates. (See the short rate equations (13)
and (14).) It is also observed that the mean reversion speeds (κj(j = 1, 2)) are almost
the same (around 0.129), and that the estimated steepening factor x21 has a quite high
negative correlation (close to -1) with the the estimated flattening factor x22, as expected.

In contrast, the volatility (σ1 = 402 bps) for the steepening factor is around 1.6 times
as large as the one (σ2 = 253 bps) for the flattening factor, possibly because it is easier
for the model with flattening factor (“two-factor Gaussian plus Quadratic-Gaussian”) to
be fitted to the observed yields than the one with steepening factor (“two-factor Gaussian
minus Quadratic-Gaussian”) for this estimation period. In other words, steepening factor
needs a higher volatility for well fitting to the observations.

Also, the difference of the estimated volatilities is partially reflected in the difference
of the log-likelihoods between two models, which is not negligible (16, 631 vs 17, 077),
since standard deviations of Monte Carlo simulations used for calculation of these log-
likelihoods fall within 10.

Finally, we observe in Figure 2 and Table 2 that the fittings to the observed yields in
“two-factor Gaussian minus Quadratic-Gaussian” & “two-factor Gaussian plus Quadratic-
Gaussian” are almost the same, but the “two-factor Gaussian plus Quadratic-Gaussian”
is slightly better, where the average of RMSE (square-root of mean square errors) is 5.82
vs 5.85 bps, and the fitting to the 20 year yield is the best (3.54 vs 3.57 bps), while the
fitting to the 5 year yield is the worst (8.94 vs 9.00 bps).

As seen before, the correlation between the estimated steepening and flattening factors
(x21, x

2
2, respectively) is extreme: the correlation is very close to – 1. This suggests that

a statistical (three-factor) model with the two factors at the same time in addition to
the level factor x3, is not likely to be stably estimated. However, the volatility differs
considerably between the two (as seen before in Table 1), suggesting they are not the
same (i.e., the steepening factor is not equal to the inverted flattening factor). Thus,
it may be possible to distinguish between the two by including additional information,
which is news reports that may correlate with the two factors differently. This line of
reasoning leads us to the next part of a text mining.

3.2 Text Minning

This subsection analyzes financial and economic Japanese news provided by Reuters Japan
from January 1st 2008 to December 31th 2011 (4 years), where the total number of news
is 265,466. First, we construct a word group by the following procedure.

1. We decompose each news into words by using MeCab software11 for each year, and
select only nouns, though they include the ones with adjectival usage. Then, we
remove only-one-character words and numbers.

11See MeCab (2006) for the description of the software.
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2. For each word, we count the number of news where the word appears.

3. In each year we extract top 2,000 words in terms of the number of news.

4. We select 2,474 words which appear in top 2,000 words for more than or equal to 2
years during the 4 years.

5. Moreover, from above 2,474 words we select 645 words which seem relevant for
representing steepening and flattening factors in our term structure model.

6. We select these 645 words as components of our word groups in the subsequent
research.

The final goal of this text mining is to find a meaningful two-word12 combination whose
frequency is likely to be linked to a steepening factor and flattening one, respectively. To
achieve this goal, we calculate the frequencies of word sets which are combinations of
above 645 words described above. First, let Fi,t(A) stand for appearance frequency of one
word A in the i-th news of the day-t, where day-t is set to be from 15:00 of the previous
business day to 14:59 of the day t. Then, let us define two words (A,B) appearance
frequency, Fi,t(A and B) as Fi,t(A and B) = min(Fi,t(A), Fi,t(B)). Then, define Ft(S),
the frequency of the day-t of a word set S (e.g. S = A and B) as Ft(S) =

∑nt

i=1 Fi,t(S),
where nt denotes the total number of the i-th news appearing in the day-t.

3.3 Selection of Two-word Sets relevant with Steepening and
Flattening Factors in Term Structure Model

Next, to find two word sets (A and B) which have high correlations with the steepening
factor x21 and the flattening factor x22 estimated by the two-factor interest rate models in
Section 3.1, we implement a regression analysis, and calculate standard sample correla-
tions for the levels of those series. Additionally, we calculate SIML correlations proposed
by Kunitomo et al. (2018) in order to remove possible spurious correlations that might
be caused by non-stationarity found in daily data. 13

Our regression analysis is based on the following equations:

log(Ft(A and B) + 1) = a1 + b1x
2
1,t + e1,t (25)

or
log(Ft(C and D) + 1) = a1 + b2x

2
2,t + e2,t (26)

where e1,t, e2,t are i.i.d. noises.
Figure 3-4 show that the time series of actual and estimated log(Ft(· and ·) + 1) for

economically/financially meaningful two-word sets, which have relatively high correlations
with x2j (j = 1, 2) estimated by our two-factor term structure models in Section 3.1. In
these figures, we denote standard sample correlations by “cor1” and SIML correlations

12We have also examined one-word groups. It has turned out that one-word groups usually lack
sufficient detail. So we use two-word groups.

13See Appendix C for a new estimation method for trends and correlations in non-stationary noisy
time series data.
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corSIML by “cor2”. The black bars and the red solid line show log-frequencies and the re-
gressed estimates by each factor, respectively. We select two-word sets, “fiscal conditions
(zaisei) & foreign (gaikoku)” for the factor x21 (steepening factor) and “business conditions
(keiki) & slowdown (gensoku)” for the factor x22 (flattening factor), which explicitly con-
tain more financial and economic meaning than the other two-word sets. Moreover, both
two-word sets “fiscal conditions (zaisei) & foreign (gaikoku)” and “business conditions
(keiki) & slowdown (gensoku)” have the highest standard and SIML correlations among
three kinds of two-word sets shown in Figure 3-4.
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Figure 3: Actual(black) and estimated(red) two-word set’s log-frequencies using “two-
factor Gaussian minus Quadratic-Gaussian model” (level factor + steepening factor)
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Figure 4: Actual(black) and estimated(red) two-word set’s log-frequencies using “two-
factor Gaussian plus Quadratic-Gaussian model” (level factor + flattening factor)
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4 Simultaneous Estimation of Three-factor Term Struc-

ture Model and Two-word Set Frequency

This section implements estimation of the three-factor (“three-factor Gaussian Quadratic-
Gaussian”) term structure model (whose short rate is defined as (1)) with frequencies of
the two-word sets selected in Section 3.3. Again, we apply a state space model whose
system and observation equations are described as follows:

(State space model for three-factor term structure model and two-word set
frequency)

(System equation)

xi,t = e−κi∆txi,t−∆t +
σi√
2

√
1− e−2κi∆t

2κi
ϵi,t (i = 1, 2) (27)

x3,t = x3,t−∆t + σ3
√
∆tϵ3,t (28)

where ϵi,t ∼ i.i.d.N(0, 1), i = 1, 2, 3, and we set ∆t as 1/250.

(Observation equation)

Yt(τ) = X1,t(τ) +X2,t(τ) +X3,t(τ) + et,τ , (29)

Xi,t(τ) =
−1

τ

[
Ai(τ) + Ci(τ)x

2
i,t

]
, (i = 1, 2) (30)

X3,t(τ) = x3,t +
λ

2
τ − σ2

3

6
τ 2 (31)

log(Ft(A and B) + 1) = ξc,1 + ξ1x
2
1,t + et,w1 (32)

log(Ft(C and D) + 1) = ξc,2 + ξ2x
2
2,t + et,w2, (33)

where Ci(τ) and Ai(τ) are defined by (8) and (12), respectively; The two-word sets are
given as (A =“fiscal conditions (zaisei)”, B =“foreign (gaikoku)”) and (C =“business con-
ditions (keiki)”, D =“slowdown (gensoku)”). Here, we assume et,j ∼ i.i.d.N(0, γ2j ), (j =
2, 5, 10, 20, 30, w1, w2). Moreover, we fix cj(j = 1, 2) as c1 = −4.23, c2 = 2.12, the es-
timates obtained by the two-factor model in Section 3.1, because it is quite difficult to
estimate cj(j = 1, 2) at the same time with the other parameters in the three-factor model.
We also note that the regression equations in the observation model are equivalent to those
in (25) and (26).

4.1 Procedure for Parameter Estimation

This subsection shows the detailed procedure in estimation of our model. In sum, our
estimation consists of the following three parts.

• Apply Monte Carlo filter with 10,000 particles to estimate state variables x1, x2, x3.
(See Appendix A for a summary of our Monte Carlo filter algorithm.)
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• Use a maximum likelihood (ML) method with a stochastic grid search to estimate
parameters other than variances of observation noises.

• Set variances of observation noises.

Particularly, we note that applying maximum likelihood (ML) method to estimation of
the variances of observation noises suffers substantial computational burden to obtain
reasonable estimates, since they have large impact on the likelihood as well as on the
other parameters’ estimates. Thus, we set the variances of observation noises separately
and use ML method for estimation of the other parameters.

Next, let us describe a stochastic grid search for estimation of parameters, λ, σi(i =
1, 2, 3), κj, ξc,j, ξj(j = 1, 2), as well as cj(j = 1, 2) for the two-factor model in Section 3.1.
(In the three-factor model in Section 4, they are fixed as c1 = −4.23 and c2 = 2.12.)

First, we define a parameter vector θ = (θi)
n
i=1(n = 12) as

θ = (λ̂, κ̂1, κ̂2, σ1, σ2, σ3, ξc,1, ξc,2, ξ1, ξ2, c1, c2), (34)

where λ̂ := λ/σ2
3, κ̂2 := κ2/σ

2
2, and κ̂1 :=

√
κ21/(|c1|σ2

1)–1 with a restriction κ21/(|c1|σ2
1)–1 >

0 due to a condition c1 ∈ (−(κ1

σ1
)2, 0) in the interest rate models (1) and (13).

1. Set the initial values θ
(0)
i , (i = 1, · · · , n) of θ = (θi)

n
i=1 by using those of λ, σi(i =

1, 2, 3), κj, ξc,j, ξj(j = 1, 2) and cj(j = 1, 2): As initial estimates of λ and σ3, we
use estimates λ and σ3 obtained by a one-factor Gaussian term structure model
with rt = x3,t. We randomly select initial estimates of κj, σj around κj = 0.25 and
σj = 0.016 (j = 1, 2) that are obtained by a two-factor Gaussian term structure
model with rt = x1,t + x3,t(= x2,t + x3,t). For the three-factor model, as initial
estimates of ξj and ξc,j (j = 1, 2), we use estimates aj and bj (j = 1, 2) in the
regression analysis (25) and (26), respectively. For the two-factor models, as initial
estimates of c1 and c2, we set c1 = −2 and c2 = 2. (In the three-factor model, we
do not estimate c1 nor c2, and fix those as c1 = −4.23 and c2 = 2.12.)

2. Generate n particles from a random variable ri following a uniform distribution
taking its values in (−δ, δ) with some δ > 0.

Initially set δ as around 2 and gradually decrease the value to be about 0.2. (How-
ever, if the initial value seems close to be the optimal one, we set it as a small value.
(e.g. λ, σ3)).

3. Compute a likelihood using θi = θ
(0)
i exp(ri) (i = 1, · · · , n). (As the parameters

(ξc,j(j = 1, 2)) change the signs, we change their signs randomly.)

4. Repeat Step 2-3 by m times to set a parameter giving the highest likelihood as
θ∗i (i = 1, · · · , n).
While generally setting m as around 100 ∼ 5000, we stop the repetition if the
likelihood is substantially improved. Also, in each repetition we use different seeds
of random numbers in Monte Carlo simulations.
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5. Set θ
(0)
i = θ∗i (i = 1, · · · , n) and repeat Step 2-4.

6. When observing no improvement of the likelihood, set a parameter giving the best
likelihood to be our estimate θ∗i (i = 1, · · · , n).

In the following, we show how to set variances of observation noises:

1. With regard to the observation noise variance γ2τ for the zero yield with term τ ,
set it proportionally to the variance of the corresponding yield level Yt(τ), that is
γ2τ = K × V ar(Yt(τ)) with a common constant K > 0 for all τ = 2, 5, 10, 20, 30.

The rationale of setting a common constant K is to avoid particular preferences
or biases for fitting the model to specific terms of the yield curve. Moreover, it
also avoids computational inefficiency. Concretely, in our algorithm of the Monte
Carlo filter method, setting very small variances of the observation noises makes
computation of the resampling probability difficult/infeasible or causes inadequate
resampling probabilities. (See Appendix A, especially Step (d) for the details.) In
particular, changing values of K for different τ with too small K for specific terms
make the estimation quite inefficient.

2. To decide the constant K, decrease the value of K gradually from K = 0.1 until
appropriate computation becomes impossible. (See 1. above.) In the two-factor
model, we obtain K = 0.01, the lowest value that seems to make our computation
possible. This value gives us well fitting to observed yields in the two factor model.
Thus, we keep the same value K = 0.01 in estimation of the three-factor model.

3. With regard to variances of observation noises for two-word sets’ frequencies γ2wj(j =
1, 2), we start with 0.56 and 0.93, respectively, since our preliminary regression
analysis provides around 0.56 and 0.93 as the variances of the regression errors.
Then, set γ2wj = L × (variances of regression errors) with a constant L > 0 to be
determined.

4. We first note that given K = 0.01, L ≥ 1 gives higher likelihoods than L < 1, and
around L = 3 does the highest in the three-factor model. However, in this case we
have the following undesirable properties: (a) factors are estimated so as to fit zero
yields solely and the two-word sets’ frequencies become irrelevant. (b) estimates of
x1 and x2 are unstable (i.e. different seeds in Monte Carlo simulations produce quite
different estimates), and the obtained estimates of x1 and x2 are indistinguishable
(almost the same).

In contrast, given K = 0.01, setting L = 0.1 improves fitting to the two-word sets’
frequencies, and at the same time it enables better fitting to the observed zero
yields than the two-factor model. However, L = 0.05 makes the fitting to two-word
sets’ frequencies better, but to the zero yields worse. Moreover, L = 0.01 causes
our computation in the Monte Carlo filter quite difficult. Since we do not need to
closely replicate sharp fluctuations of the two-word sets’ frequencies with sacrificing
the fitting to the yields, we choose L = 0.1.

We remark that for each value of K and L, we estimate the parameters other than vari-
ances of observation noises by applying ML method with stochastic grid search explained
above (Step 1-6).
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4.2 Estimation Result

The estimation result is shown below in Table 3-4 and Figure 5-8. We first note that
although it is shown in Table 3 that the log-likelihood is lower than the one in the two-
factor models, those are not comparable, because the current observation data are not
the same as in Section 3.1, that is, the observation data associated with two-word sets’
frequencies are added in the estimation. Nonetheless, we obtain better fitting to the
observed zero-yields together with well replication of the trends of the two-word sets’
frequencies, as will be seen below.

Next, we see in Table 3 and Figure 5 with Figure 1 that the term premium λ and the
volatility σ3 for the level factor x3 are similar to the ones in the two-factor models, and
the estimated x3 has a quite similar shape and a high correlation (about 0.9) with those
in the two-factor models.

Third, with regard to the steepening factor x1, the mean-reversion speed κ1 and the
volatility parameter σ1 become lower than the ones in the corresponding two-factor model
(“two-factor Gaussian minus Quadratic-Gaussian”), while the resulting correlation of x21
between three and two factor models is still high(0.79).

3 factor 2 factor(steepening) 2 factor(flattening)
κ1 0.0599 0.1290 –
σ1 0.0189 0.0402 –
κ2 1.0523 – 0.1290
σ2 0.0562 – 0.0253
λ 0.0033 0.0042 0.0040
σ3 0.0136 0.0149 0.0147
ξ1 612.0 – –
ξc,1 -0.535 – –
ξ2 311.1 – –
ξc,2 -0.036 – –

log-likelihood 15,392.91 16,631.05 17,077.11

Table 3: Estimates of parameters: (“3 factor” means three-factor Gaussian Quadratic-
Gaussian model, and “2 factor(steepening/flattening)” means two-factor Gaussian mi-
nus/plus Quadratic-Gaussian model, respectively.)
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Figure 5: Estimated factors for three-factor Gaussian Quadratic-Gaussian model with
word frequencies

As for the flattening factor x2, the mean-reversion speed κ2 and the volatility σ2
become more than 8 times and twice as large as the ones in the corresponding two-
factor (“two-factor Gaussian plus Quadratic-Gaussian”) model, respectively, presumably
because the best κ2’s estimate is obtained so that this factor reflects a strong mean
reversion with a high volatility of the two-word set frequency (“business conditions (keiki)
& slowdown (gensoku)”), which is observed in Figure 8. Thus, the correlation of x22
between three and two factor models is lower than that of x21(0.52 vs 0.79).

2y 5y 10y 20y 30y total average
“three-factor Gaussian Quadratic-Gaussian” 3.28 7.40 3.66 3.68 4.89 4.82

“two-factor Gaussian minus Quadratic-Gaussian” 4.52 9.00 5.35 3.57 5.31 5.85
“two-factor Gaussian plus Quadratic-Gaussian” 4.54 8.94 5.27 3.54 5.31 5.82

Table 4: Square root of mean squared errors (RMSEs) of estimated yields: three-factor
Gaussian Quadratic-Gaussian model with word frequency (basis points (bps))

Table 4 provides RMSEs(square root of mean squared errors) of zero yields’ estimates,
and Figure 6 shows the time series of the observed & estimated zero yields’ estimates,
respectively. In Figure 6 the fitting to the observed five and two year zero yields in the
three-factor model looks better than the one in the two-factor models examined in Section
3.1. We also see in Table 4 that the total average of RMSEs in the three-factor model is
less than 5 basis points(bps), which is smaller than those (around 6 bps) in the two-factor
models. Also, it is observed that the RMSEs for all the maturities except the 20 year yield
in the three-factor model are smaller than those in the two-factor models. Considering
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that two observation equations related to the two-word sets’ frequencies are added, our
three-factor model seems to work well.
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Figure 6: Observed rates, estimated rates of two-factor Gaussian plus Quadratic-Gaussian
model without text mining, and estimated rates of three-factor Gaussian Quadratic-
Gaussian model with text mining

Finally, Figure 7 shows the time series of actual and estimated log-frequencies [log(Ft(· and ·)+
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1)] of “fiscal conditions (zaisei) & foreign (gaikoku)” and Figure 8 shows that of “business
conditions (keiki) & slowdown (gensoku)”. Comparing those figures, we observe that the
flattening factor (x22) captures the trend of the corresponding two-word set’s log-frequency
better than the steepening one (x21). In fact, the correlation between the log-frequency of
“business conditions (keiki) & slowdown (gensoku)” and the factor x22 (flattening factor)
is 0.78, while that of the log-frequency of “fiscal conditions (zaisei) & foreign (gaikoku)”
and the factor x21 (steepening factor) is 0.54.
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Figure 7: Actual(black) and estimated(red) log-frequencies of “fiscal conditions (zaisei)
& foreign (gaikoku)” by three-factor Gaussian Quadratic-Gaussian model with word fre-
quencies
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Figure 8: Actual(black) and estimated(red) log-frequencies of “business conditions (keiki)
& slowdown (gensoku)” by three-factor Gaussian Quadratic-Gaussian model with word
frequencies

4.3 Discussion

This subsection focuses on the relation between the estimated steepening & flattening
factors and the movement of spreads in the term structure. Moreover, we would like to
interpret “sentiment factors” in the context of spreads among medium-term, long-term
and ultra(super)-long term yields. We also informally collect market participants’ views
about what some specific spreads mean. We then examine whether each of the esti-
mated optimist spread-flattening and pessimist spread-steepening factors has reasonable
interpretations.

First, we show correlations between yields/spreads/butterflies and estimated factors in
Table 5 below, where the steepening factor x21 is highly correlated with 30-5y and 20-10y
spreads (0.94 and 0.90, respectively), while the flattening factor x22 has a high negative
correlation (-0.85) with the 10-2y spread. These are observed in Figure 11 and 10. We
also see the level factor x3 has high correlations with 20y and 30y yields (0.83 and 0.82,
respectively).
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x21 x22 x3
yield 2y -0.66 0.24 0.18
yield 5y -0.70 -0.01 0.28
yield 10y -0.55 -0.33 0.52
yield 20y -0.15 -0.45 0.83
yield 30y -0.12 -0.17 0.82
spread 5-2y -0.49 -0.66 0.42
spread 10-2y 0.31 -0.85 0.43
spread 20-2y 0.65 -0.66 0.49
spread 30-2y 0.75 -0.51 0.68
spread 30-10y 0.78 0.31 0.52
spread 20-10y 0.90 -0.09 0.38
spread 30-20y 0.04 0.55 0.29
spread 10-5y 0.68 -0.48 0.18
spread 20-5y 0.83 -0.35 0.29
spread 30-5y 0.94 -0.16 0.44
butterfly 10-5-2y 0.77 -0.02 -0.08
butterfly 30-20-5y -0.68 0.46 -0.15
butterfly 5-10-20y -0.06 0.59 0.12

Table 5: Correlations between yields and estimated factors by three-factor Gaussian
Quadratic-Gaussian model with word frequencies

Next, let us discuss on the market participants’ remarks collected from portfolio man-
agers of hedge funds and others who are actively participating in Japanese government
bond markets. There are two kinds of remarks: one about long and medium term spreads
and the other about ultra(super)-long and long-term spreads.

When asking particularly about the relation between short-run business conditions and
yield spreads, we customarily get the following kind of reply: When economy picks up
(recovery), the 10-2 year spread often increases. Or conversely, when business conditions
slow down, the 10-2 year spread decreases. In fact, this statement is consistent with data
which show a high correlation of the 10-2 year spread with the leading diffusion index
published monthly by the Cabinet Office, which is a good predictor of business conditions.
Figure 9 below shows that the 10-2 year spread has a relatively high correlation(0.72) with
the leading diffusion index (DI).
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Figure 9: Plot of 10-2year spread and leading diffusion index (DI)

Then, as seen in Table 5, we observe in Figure 10 below with an inverted scale for the
10-2 year spread that the flattening factor x22 moves in a highly negatively correlated way
with the 10-2 year spread, and thus with short run business conditions. Also, in Figure
8, the flattening factor x22 explains the two-word set’s frequency of “business conditions”
and “slowdown” (= inverted “recovery”) very well.

Consequently, the spread-flattening factor x22 has a reasonable interpretation of a factor
representing short-run business conditions’ influence on market sentiment. The market
participants are closely following news about business conditions, especially those sug-
gesting slowdown.
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Figure 10: Plots of estimated factor for x22 in “three-factor Gaussian Quadratic-Gaussian”
model and 10-2year spread

Finally, let us consider a market participants’ remark regarding long-run concerns and
yield spreads. They often note that bad news about fiscal conditions (e.g., budget deficits)
and substantial increase in uncertainty about future (long-run trends) (e.g., negative
structural change after financial crisis) have more effects on ultra-long (20 year, 30 year)
rates than shorter (equal to and less than 10 year) rates, making spreads between ultra-
long term yields and the others increase substantially. Our results show the estimated
steepening factor has a very high correlation with the ultra-long term related spreads (i.e.
the 30-5 year, 20-10 year spreads), and at the same time explains the word frequency of
market participants’ long-run concerns.

Figure 11 below demonstrates a close relation between the steepening factor x21 and
the 30-5 & 20-10 year spreads. (Let us recall Table 5 shows their high correlations,
0.94 for the 30-5y and 0.90 for the 20-10y spreads.) Moreover, as seen in Figure 7, the
steepening factor x21 explains the frequency of the two-word group “fiscal conditions”
and “foreign” very well. “Fiscal conditions” have been a long run concern of the market
during our research period. News about “foreign” reflects the market’s concern about
heightened uncertainty triggered by the global financial crisis and European sovereign
debt crisis, both of which are explained in detail in the following analysis. Thus, as an
overall assessment, the spread-steepening factor has a reasonable interpretation of a factor
representing the market’s long run concerns.
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30−5y spread(black, left axis) and  

steepening factor x!²(red, right axis)
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cor= 0.90
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Figure 11: Plot of estimated factor for x21 in “three-factor Gaussian Quadratic-Gaussian”
model and 30-5year or 20-10year spread

Regarding Japanese fiscal conditions, we see the word, “deterioration (akka)” or
“deficit (akaji)” or “supplementary [budget] (hosei [yosan])” in 34% (1,202 out of 3,495)
of the news including the two-word set “fiscal conditions (zaisei) & foreign (gaikoku)”,
indicating worsening fiscal condition. In fact, in Figure 12 below, the general government
gross debt to GDP ratio implies a quite serious situation in Japan especially during our
research period 2008-2011, compared with in Norway, Sweden, Germany, France, U.S.
and Italy.
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Figure 12: Fiscal conditions: general government gross debt to GDP ratio

Concerning heightened uncertainty, it seems caused by events in “foreign”: In fact,
our research period includes the financial crisis in U.S. & Europe and the sovereign debt
crisis in Europe, both of which shook the market confidence and elevated uncertainty.
In contrast, Japanese financial markets were relatively calm at that time and there was
no domestic incidence to negatively affect Japanese market confidence. Thus, it seems
reasonable that an erosion of market confidence, if any, was originated in foreign countries.

This heightened uncertainty also causes drastic appreciation of Japanese yen (JPY)
against U.S. dollar (USD), from JPY 108.60 in January 4th, 2008 to JPY 76.91 in Decem-
ber 30th, 2011. See Figure 13 that shows the price of the unit amount of USD in terms
of JPY (USDJPY).
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Figure 13: Spot rates of USDJPY

At the same time, the word, “foreign exchange (gaikoku kawase)” appears in 83%
(2,885 out of 3,495) of the news including the two-word set “fiscal conditions (zaisei) &
foreign (gaikoku)”.

Furthermore, the correlations between the USDJPY rate and the estimated x21, the
30-5 year and 20-10 year spreads are given by -0.56, -0.55 and -0.61, respectively, that is,
JPY appreciation against USD has positive correlations with the steepening factor and
ultra-long term related spreads.

These phenomena reflect that a globally increasing risk-aversion (risk-off) generally
leads to long JPY, and also JGB, especially the JGB futures and then cash bonds with
maturities closer to the futures’ such as 10 and 5 years, which results in the steepening of
the 30-5 and 20-10 year spreads.

Finally, we examine word sets related to the word “foreign exchange” more carefully.

JPY appreciation JPY depreciation long JPY short JPY

552 132 379 413
USD depreciation USD appreciation short USD long USD

337 177 549 527
JPY appreciation&USD depreciation JPY depreciation & USD appreciation long JPY& short USD short JPY& long USD

209 84 157 158
EUR depreciation EUR appreciation short EUR long EUR

167 55 213 160
JPY appreciation&EUR depreciation JPY depreciation & EUR appreciation long JPY& short EUR short JPY& long EUR

65 6 45 12

Table 6: Words & their frequencies in the news where the word “foreign exchange” appears
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Table 6 above shows meaningful words concerning currencies’ appreciation/depreciation,
and their frequencies in the news where “foreign exchange” appears.

First, the left hand side in Table 6 shows that frequencies of the words including cur-
rency appreciation/depreciation clearly implies the JPY appreciation: we see 552 news
containing the word “JPY appreciation (yendaka)” against 132 news including “JPY de-
preciation (yenyasu)”; 337 news “USD depreciation (doruyasu)” against 177 news “USD
appreciation (dorudaka)”; 167 news “EUR depreciation(yuroyasu)” against 55 news “EUR
appreciation(yurodaka)”; 209 and 84 news containing the words “JPY appreciation &
USD depreciation (yendaka& doruyasu)” and “JPY depreciation & USD appreciation
(yenyasu& dorudaka)”, respectively; 65 and 6 news containing “JPY appreciation &
EUR depreciation (yendaka& yuroyasu)” and “JPY depreciation & EUR appreciation
(yenyasu& yurodaka)”, respectively.

However, the right hand side in Table 6 shows that frequencies of the words with
“JPY(USD) long/short” do not indicate which currency is strong/weak, i.e. they do not
tell whether JPY appreciates against USD or not: 379 news containing the word “long
JPY (yengai)” against 413 news including “short JPY (yenuri)”; 549 news “short USD
(doruuri)” against 527 news “long USD (dorugai)”; in particular, the words “long JPY &
short USD (yengai & doruuri)” and “short JPY & long USD (yenuri & dorugai)” appear
in almost the same number of the news (157 and 158, respectively). In contrast, the
number of news regarding long/short EUR may imply appreciation of JPY against EUR:
The word “long JPY & short EUR (yengai & yurouri)” appears in 45 news, while “short
JPY & long EUR (yenuri & yurogai)” does in 12 news.

Moreover, the total number of the news (without double counting) containing “JPY
appreciation & USD depreciation (yendaka & doruyasu)” or “longJPY & shortUSD (yen-
gai & doruuri)” is 336, while that of JPY depreciation & USD appreciation (yenyasu &
dorudaka)” or “shortJPY & longUSD (yenuri & dorugai)” is 230, respectively. Obviously,
the former is more, but its difference is not so much.

Also, the correlation between the USDJPY forex rate and the frequency of the two-
word sets “fiscal conditions (zaisei) & foreign (gaikoku)” is -0.46, which is not high.

As such our analysis of the word sets’ frequencies does not clearly reflect substantial
JPY appreciation against USD during the research period. It seems partly because our
simple text mining method is not able to distinguish whether those words are used in
the context of JPY appreciation or not. Thus, one of our future research topics is to
incorporating a more advanced and elaborate analysis of the news (e.g. through a natural
language processing) into our term structure modeling.

5 Concluding Remarks

Market sentiment is an elusive qualitative concept in empirically-oriented asset market
analyses. Almost everybody in the market (regardless of portfolio managers, researchers,
and central bankers) agrees that it is important, and yet it is not well incorporated into
quantitative tool kits of asset market modeling, since the sentiment is not observable
and thus considered to be not quantifiable. In contrast, quantitative dynamic factor
models are successfully applied in many countries to “explain” the actual term structure
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of interest rates, though it is not clear what drives these factors.14 They are a good
stochastic description of the market interest rates, but they are short of discerning the
underlying economic determinants.

The contribution of this paper is to solve both problems at the same time, first by
formulating market sentiment as quantifiable factors in the term structure models, and
then by finding observable variables (frequencies of relevant news reports) linked to the
sentiment factors, so that they can be estimated quantitatively. Along this way, what
drives sentiment is also revealed.

Specifically, this paper has formulated and successfully estimated a three-factor term
structure model with explicit sentiment factors in a period including the Global Financial
Crisis and the European Sovereign Debt Crisis, the most challenging period of volatile
economic activities and heightened uncertainty. The key of our analysis is a text mining
of a large text data of real time, relatively high-frequency market news, to find a key word
set about market participants’ major concerns, that is, determinants of their sentiment.

In this procedure, we have been able to distinguish (1) a spread-steepening factor which
is driven by pessimists’ concerns and explaining the ultra-long and long term spreads (e.g.
20-10 year) from (2) a spread-flattening factor which is driven by optimists’ concerns and
influencing the long and medium term spreads (e.g. 10-2 year). Moreover, a pessimist
spread-steepening factor is mostly concerned with news about long-run fiscal conditions
and global risks, while an optimist spread-flattening factor is mostly influenced by short-
run business cycle activities. In this way, we have been able to identify two spread-
determining factors influencing different parts of the term structure of interest rates.

Finally, there is one caveat, related to the discussion in Section 4.3, especially about
the word “foreign (exchange)”. The current work takes a parsimonious approach of text
mining, namely to find a key word group and to use its frequency as an observable variable
of an otherwise unobservable sentiment factor. This approach has been quite successful in
distinguishing different spread factors. However, beyond this point, the link between key
words and events influencing sentiment is still loose, especially with respect to the context
key words are used. Thus, we still need to improve our analysis to identify in what context
words are used and what connotations they have in financial news. More essentially, it is
of utmost importance to develop a method that is able to select meaningful combination
or sequence of word groups in the news from a specific viewpoint of research objectives
we have, which remains as a main topic in our future research.

14There are attempts (for example, Rudebusch and Wu (2008)) in the macro-finance literature that try
to explain dynamic factors in the term structure models by macro economic variables including monetary
policy. However, the attempts are not very successful so far. The reason is that level, slope and curvature
(volatility) components in the term structure of interest rates happen to be poorly correlated with macro
variables in the first place. See Adrian (2017)).
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A Algorithm for Monte Carlo Filter

This appendix describes the outline of an algorithm of Monte Carlo filter used in this
work, which is an adaptation of Fukui et al. (2017).

We introduce a state space model that consists of the following system and observation
models: {

xt = f(xt−∆t, ϵt) (system equation)
yt = h(xt) + et (observation equation),

(35)

where xt, yt and ∆t denote a N dimensional state vector, a M dimensional observation
vector at time t and the time interval of observational data, respectively while ϵt and et
denote the system noise and the observational noise whose density functions are given
by q(v) and ψ(u) respectively. The functions f and h are generally non-linear maps,
RN × RN 7→ RN and RN 7→ RM , and the initial state vector x0 is assumed to be a
random variable whose density function is given by p0(x).

Next, we summarize the notations: p(xt|yt−∆t), called “one step ahead prediction”
denotes the conditional density function of a state vector xt given an observation vector
yt−∆t where ∆t is the interval of time series data. p(xt|yt), called “filter” denotes the

conditional density function of xt given yt. {p[1]t , · · · , p
[m]
t } and {s[1]t , · · · , s

[m]
t } represent

the vectors of realization of m trials of Monte Carlo simulations from p(xt|yt−∆t) and

p(xt|yt), respectively. Then, when we choose {s[1]0 , · · · , s
[m]
0 } from the density function

p0(x) of the initial state vector x0, as realization of Monte Carlo simulations, an algorithm
of Monte Carlo filter is as follows.

[Summary of Algorithm for Monte Carlo filter]

1. Apply the following steps (a)∼(d) to each time t = 0,∆t, 2∆t, · · · , (T∗ − ∆t), T∗
where T∗ denotes the final time point of the data.

• (a) Generate the system noise ϵ
[k]
t , k = 1, · · · ,m according to the density

function q(ϵ).

• (b) Compute for each k = 1, · · · ,m

p
[k]
t = f(s

[k]
t−∆t, ϵ

[k]
t ).

We note that f(·, ·) is linear in our model, such as Fs
[k]
t−∆t + Gϵ

[k]
t . (See the

system equations in “State space model for two-factor term structure model”
in Section 3.1 and “State space model for three-factor term structure model
and two-word set frequency” in Section 4.)

• (c) Evaluate the density function of ψ(u) at u = yt−h(p
[k]
t ), k = 1, · · · ,m and

define the evaluated densities as α
[k]
t , k = 1, · · · ,m. In our models, α

[k]
t is given

by:

α
[k]
t = ΠM

l=1

1√
2πγ2l

exp

(
− [yl,t − hl(p

[k]
t )]2

2γ2l

)
, (36)

where h(·) in our models is expressed as

hl(p
[k]
t ) = al + bl(p

[k]
1,t)

2 + cl(p
[k]
2,t)

2 + dlp
[k]
3,t,
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here al, bl, cl and dl are explicitly given as the constant terms, the coefficients
of x2j,t(j = 1, 2) and x3,t in the observation equations in “State space model for
two-factor term structure model” in Section 3.1 and “State space model for
three-factor term structure model and two-word sets frequency” in Section 4.

• (d) Resample {s[1]t , · · · , s
[m]
t } from {p[1]t , · · · , p

[m]
t }. More precisely, resample

each s
[k]
t , k = 1, · · · ,m from {p[1]t , · · · , p

[m]
t } with the probability given by

Prob.(s
[k]
t = p

[i]
t |yt) =

α
[i]
t∑m

k=1 α
[k]
t

, k = 1, · · · ,m, i = 1, · · · ,m.

We note that when the variances of the observation noises, γ2l are very small,

α
[k]
t tends to take values close to zero (cf. (36)), which makes computation

of this resampling probability difficult (infeasible) or causes inadequate resam-
pling probabilities. (e.g. The support of a resampling distribution concentrates
on a few particular values.)

• (e) We obtain the filtered estimates x̂t by

x̂t =
1

m

m∑
i=1

s
[i]
t .

Particularly, in our models, we calculate

x̂2j,t =
1

m

m∑
i=1

(s
[i]
j,t)

2, j = 1, 2,

x̂23,t =
1

m

m∑
i=1

s
[i]
3,t.

The estimation of unknown parameters is based on the maximum likelihood method. If θ
denotes the vector representing whole unknown parameters, the likelihood L(θ) is given
by

L(θ) = g(y∆t, · · · , yT∗ |θ) = Π
T∗
∆t
i=1gi(Yi∆t|y∆t, · · · , y(i−1)∆t, θ); (37)

g1(y∆t|y0) = p0(y∆t), (38)

where g(y∆t, · · · , yT∗ |θ) and gi(yi∆t|y∆t, · · · , y(i−1)∆t, θ) denote the joint density function
of y∆t, · · · , yT∗ with parameter vector θ and the conditional density function of yi∆t given
y∆t, · · · , y(i−1)∆t with θ, respectively. The log-likelihood l(θ) is computed approximately
within the framework of the Monte Carlo filter by:

l(θ) =

T∗
∆t∑
i=1

(
log

m∑
k=1

α
[k]
i∆t

)
− T∗

∆t
logm.

Then, maximize l(θ) with respect to θ to obtain the maximum likelihood estimator θ∗.
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B Interest Rate Models with Market Sentiment

This appendix briefly explains an equilibrium model with a representative agent, which
supports interest rate models with market sentiment. The model is motivated by the
argument of Nishimura and Ozaki (2017 Chapter 12), which suggests the economic agent
may find himself in three different states with respect to the (part or whole) of stochas-
tic model he faces: he may be confident about the stochastic model, not confident and
pessimistic (and thus maximize his utility assuming the worst case), or optimistic (as-
suming the best case). Particularly, we assume in a consumption-portfolio allocation a
representative agent is confident about some risks (Brownian motions in this paper), but
not confident about the others, of which he may be pessimistic assuming the worst case
for some and optimistic assuming the best case for the rest. We present the model in an
intuitive way in this appendix. A rigorous argument is found in Nishimura, Saito and
Takahashi (work in progress).

We start with an appropriate filtered probability space (Ω,F , {Ft}t≥0, P ) with d-
dimensional Brownian motion B = (B1, · · · , Bd). Then, we specify fundamental un-
certainty as uncertainty about the stochastic model in the following way. We work with
some d-dimensional progressively measurable process λ = {λt; 0 ≤ t < ∞}, a martingale
Zt(λ) defined by

Zt(λ) := exp

{
d∑

j=1

∫ t

0

λj,sdBj,s −
d∑

j=1

1

2

∫ t

0

λ2j,sds

}
(39)

and probability measure P λ,

P λ(A) := E[ZT (λ)1A]; A ∈ FT , for any T ∈ [0,∞). (40)

We assume that the Maruyama-Girsanov theorem can be applied; that is, a process
Bλ = {(Bλ

1,t, · · · , Bλ
d,t); 0 ≤ t < ∞}, Bλ

j,t := Bj,t −
∫ t

0
λj,sds (j = 1, 2, · · · , d) is a d-

dimensional Brownian motion on (Ω,F , P λ). (For a rigorous argument, see Chapter
1.7 and Chapter 3.9 in Karatzas & Shreve (1998) and Chapter 3.5 in Karatzas & Shreve
(1991). Here λj represents fundamental uncertainty about the j-th risk (Brownian motion
Bj). If λj ≡ 0 (i.e. Bλ

j = Bj), there is no fundamental uncertainty about the j-th risk.
When there is fundamental uncertainty about the the j-th risk, we only know the true
j-th risk is one of {Bλ

j ;λj ∈ Λj} with Bλ
j,t := Bj,t −

∫ t

0
λj,sds, 0 ≤ t <∞ for some set Λj,

and we cannot tell which is the true one.
In a consumption-portfolio allocation for a single risky asset and an risk-free asset,

a representative agent takes his/her own views for uncertainties (risks) associated with
Brownian motions into account. Specifically, a representative agent who has a pessimistic
(optimistic) view on Brownian motion B1(B2) assumes the worst (best) case. Thus,
he/she implements optimization in a consumption-portfolio allocation with respect to
λj (j = 1, 2), that is, minimize (maximize) the expected utility with respect to λ1(λ2),
in addition to standard maximization for an allocation of consumption(c), a risk-free
asset and a risky asset whose proportion of the agent’s wealth (W ) is denoted by α. In
contrast, for j = 3, · · · , d, the economic agent has perfect confidence, so that we have
λj ≡ 0. Then, Bλ

1,t = B1,t−
∫ t

0
λ1,sds, B

λ
2,t = B2,t−

∫ t

0
λ2,sds and B

λ
j = Bj for j = 3, · · · , d

are Brownian motions under the probability measure P λ generated by a martingale Z(λ)
with λ = (λ1, λ2, 0, · · · , 0).
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More concretely, the agent with a time-separable expected utility specified by a strictly
increasing and concave function solves the following problem:

sup
(α,c)∈Π

sup
λ2∈Λ2

inf
λ1∈Λ1

EPλ

[∫ ∞

0

e−βtu(ct)dt

]
, (β > 0), (41)

where pessimism and optimism are expressed by infλ1 and supλ2
, respectively. Here, Π

and Λj (j = 1, 2) denote appropriate admissible control sets. In particular, the conditions
specifying Λj contain that λj (j = 1, 2) are progressively measurable processes such that
λ2j,t ≤ λ̄j(xt)

2 with a state vector process x = {xt; t ≥ 0}, and Z(λ) is a martingale under
P given λi(i ̸= j).

Moreover, we exogenously specify λ̄j(x), (a function of x, Rn → R) so that Z(λ̄) with
a progressively measurable process λ̄(xt) is a martingale under P .

Further, in what follows, we will specify u(c) as u(c) = log c for c > 0.
Next, let us suppose that a n-dimensional state vector process x, a dividend process

D and a price process η of a risky asset receiving the dividend stream {Dt : t ≥ 0} are
obtained by the following system of stochastic differential equations:

dxt = µx(xt)dt+
d∑

j=1

σx,j(xt)dBj,t (42)

= [µx(xt) +
2∑

j=1

λj,tσx,j(xt)]dt+
d∑

j=1

σx,j(xt)dB
λ
j,t; x0 given, (43)

dDt = Dt[µD(xt)dt+
d∑

j=1

σD,j(xt)dBj,t] (44)

= Dt[(µD(xt) +
2∑

j=1

λj,tσD,j(xt))dt+
d∑

j=1

σD,j(xt)dB
λ
j,t]; D0 > 0 given, (45)

dηt = ηt[{µ(xt)−
Dt

ηt
}dt+

d∑
j=1

σj(xt)dBj,t] (46)

= ηt[({µ(xt)−
Dt

ηt
}+

2∑
j=1

λj,tσj(xt))dt+
d∑

j=1

σj(xt)dB
λ
j,t]; η0 > 0 given, (47)

with µx, σx,j : Rn → Rn and µD, σD,j, µ, σj : Rn → R, j = 1, · · · , d.
We also suppose that while a state vector process x and a dividend process D are

exogenously given, an interest rate r of an risk-free asset, and the expected rate of return
µ and volatilities σj of a price process η are endogenously determined in equilibrium.

For simplicity, for the first and second element of x, xi (i = 1, 2), we assume σx,j,i = 0,
j ̸= i (i = 1, 2), where σx,j,i denotes the i-th element of σx,j.

Then, the representative agent’s wealth process W is described as follows: given
stochastic processes of a risk-free interest rate r, a consumption c and proportion α of the
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wealth invested in a risky asset,

dWt = [rtWt + αtWt(µt − rt)− ct]dt+ αtWt

[
d∑

j=1

σj,tdBj,t

]
(48)

=

[
rtWt + αtWt(µt − rt)− ct + αtWt

2∑
j=1

σj,tλj,t

]
dt+ αtWt

[
d∑

j=1

σj,tdB
λ
j,t

]
; W0 = w.

(49)

Then, solving the associated HJB equation, we obtain candidates for optimal controls are
given by

λ1,t = −λ̄1(xt); λ2,t = +λ̄2(xt), (50)

ct = βWt; αt =
µ(xt)− r(xt)− λ̄1(xt)σ1(xt) + λ̄2(xt)σ2(xt)

|σ(xt)|2
.

We remark that if λ̄j(xt)σj(xt) > 0(j = 1, 2), a pessimistic (optimistic) view reduce
(increase) αt, investment proportion of an risky asset. Hereafter, we suppose that the
candidates (50) of optimal controls attain (41).

(Equilibrium) An equilibrium in this economy is characterized as follows: it holds that
c = D and α = 1. Given r = {rt; t ≥ 0}, (43), (45), (47) and (49), the representative
agent solves (41).

We also note that the equilibrium conditions above imply that Wt =
1
β
Dt(= ηt), and

hence µ(xt) = β+µD(xt) and σj(xt) = σD,j(xt) in equilibrium. Thus, the condition α = 1
provides an equilibrium interest rate as

rt = β + µD(xt)− |σD(xt)|2 − λ̄1(xt)σD,1(xt) + λ̄2(xt)σD,2(xt), (51)

in which the term β+µD(xt)−|σD(xt)|2 is a well-known equilibrium interest rate process
without pessimism and optimism for the log-utility. We remark that if λ̄j(xt)σD,j(xt) > 0
(j = 1, 2), the expression agrees with our intuition, that is pessimistic (optimistic) views
reduces (increases) the equilibrium interest rate.

Next, we note that x is expressed under Qλ, a risk-neutral probability measure induced
by P λ as

dxt = [µx(xt) +
2∑

j=1

λjσx,j(xt)]dt+
d∑

j=1

σx,j(xt)[dB
Qλ

j,t − σD,j(xt)dt], (52)

where Qλ(A) = EPλ
[ZT (σD)1A] for any T > 0, A ∈ FT ,

ZT (σD) = exp

(
−
∫ T

0

σD(xs)dBs −
1

2

∫ T

0

|σD(xs)|2ds
)
, (53)

and BQλ
is a d-dimensional Brownian motion under Qλ.
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Hence, equilibrium zero coupon bond price P (t, T ) and zero yield Y (t, T ) at time t
with maturity T are expressed respectively by

P (t, T ) = EQλ̄
[
e−

∫ T
t rsds|Ft

]
(54)

Y (t, T ) =
−1

(T − t)
logP (t, T ), (55)

with λ̄ = (−λ̄1, λ̄2, 0, · · · , 0) and an equilibrium interest rate (51).

B.1 Example: Three-factor Gaussian Quadratic-Gaussian Model

When we specify

µD(xt), σD,j(xt);µx(xt), σx,j(xt); λ̄j(xt) (j = 1, 2) (56)

associated with the equation (51), we obtain a concrete expression of equilibrium interest
rate rt and zero yields Y (t, T ), 0 ≤ t ≤ T < ∞. In what follows, we present such an
example for yield curve models with new factors (proxies of pessimism and optimism)
that follow Quadratic-Gaussian processes, which is a simplified version of the previous
section’s models.

First, as an example of the state variable process (42), let us consider the following
model with three-dimensional Brownian motion B = (B1, B2, B3), and constants aj ≥ 0,
bj > 0 (j = 1, 2), b3 ≥ 0, a3, σx,j, j = 1, 2, 3:

dxj,t = (aj − bjxj,t)dt+ σx,jdBj,t, xj,0 given, j = 1, 2 (57)

dx3,t = (a3 − b3x3,t)dt+ σx,3dB3,t, x3,0 given. (58)

Moreover, as an example of the dividend process (44), we suppose

dDt = Dt[µD(xt)dt+
3∑

j=1

σD,j(xt)dBj,t], D0 > 0, (59)

in which

µD(xt) = µ0 + µ1x
2
1,t + µ2x

2
2,t + µ3x3,t, with constants µj(j = 0, 1, 2, 3) (60)

σD,j(xt) = σD,jxj, σD,j > 0 (j = 1, 2); σD,3(xt) = σD,3 with constants σD,j(j = 1, 2, 3).

(61)

In addition, we specify

λ̄j(xt) = ϕjxj,t with constants ϕj > 0 (j = 1, 2). (62)

Thus, we have λ̄j(xt)σD,j(xt) = σD,jϕjx
2
j,t (j = 1, 2) in (51), and the optimal λj,t (j = 1, 2)

are given by λ1,t = −λ̄1(xt) = −ϕ1x1,t and λ2,t = λ̄2(xt) = ϕ2x2,t. (λ3,t ≡ 0 by our standing
assumption.)

Then, each of Bλ̄
1,t = B1,t +

∫ t

0
λ̄1,sds, B

λ̄
2,t = B2,t −

∫ t

0
λ̄2,sds and Bλ̄

3,t = B3,t is a

Brownian motion under P λ̄ with λ̄ = (−λ̄1, λ̄2, 0). (e.g. Lemma 3 and Exercise 3-11-i) in
Chapter 3 of Bain and Crisan (2008).)
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Thus, the equilibrium interest rate (51) is given by

rt = β + (µ0 + µ1x
2
1,t + µ2x

2
2,t + µ3x3,t)

−
2∑

j=1

σ2
D,jx

2
j,t − σ2

D,3 − σD,1ϕ1x
2
1,t + σD,2ϕ2x

2
2,t, (63)

(β > 0, µj ∈ R, σD,j > 0, ϕj > 0 (j = 1, 2); µ3, σD,3 ∈ R). (64)

Moreover, we obtain the SDEs of xj,t, j = 1, 2, 3 under P λ̄ as

dx1,t = [a1 − (b1 + ϕ1σx,1)x1,t]dt+ σx,1dB
λ̄
1,t, (65)

dx2,t = [a2 − (b2 − ϕ2σx,2)x2,t]dt+ σx,2dB
λ̄
2,t, (66)

dx3,t = (a3 − b3x3,t)dt+ σx,3dB
λ̄
3,t, (67)

where we suppose b1 + ϕ1σx,1 > 0 and b2 − ϕ2σx,2 > 0.
In addition, we have each SDE of xi,t, i = 1, 2, 3 under Qλ̄ as

dx1,t = [a1 − (b1 + (ϕ1 + σD,1)σx,1)x1,t]dt+ σx,1dB
Qλ̄

1,t , (68)

dx2,t = [a2 − (b2 − (ϕ2 − σD,2)σx,2)x2,t]dt+ σx,2dB
Qλ̄

2,t , (69)

dx3,t = (a3 − σD,3σx,3 − b3x3,t)dt+ σx,3dB
Qλ̄

3,t , (70)

where BQλ̄
= (BQλ̄

j )3j=1 is a three dimensional Brownian motion under Qλ̄, and we assume
b1 + (ϕ1 + σD,1)σx,1 > 0 and b2 − (ϕ2 − σD,2)σx,2 > 0.

Finally, as for the term structure of interest rates (55), we omit the expression of
Gaussian part (x3), which is well-known. (e.g. Appendix in Nakano et al. (2018)) The
expression corresponding to quadratic-Gaussian factors (x2i , i = 1, 2) will be given in the
next section.

We remark that if we set aj = 0 (j = 1, 2) in (57) as a special case, yj := x2j is the
solution to the following SDE: with ay,j = σ2

x,j, by,j = 2bj and σy,j = 2σx,j,

dyj,t = (ay,j − by,jyj,t)dt+ σy,j
√
yj,tdBj,t. (71)

That is, x2j becomes the so called squared-root (CIR15) process. (See Theorem 3.2 in
Shirakawa (2002) for a measure change associated with λ̄j(yj,t) = ϕj

√
yj,t with positive

constants ϕj (j = 1, 2).)

B.2 Expression of Term Structure in Quadratic-Gaussian Model

This appendix shows an expression of a term structure of interest rates corresponding to
a Quadratic-Gaussian factor in the previous section. Without loss of generality, we use a
notation Q instead of Qλ for a risk-neutral probability measure.

First, let us introduce the following SDE: with constants κ, θ̂, σ,

dyt = κ(θ̂ − yt)dt+ σdBQ
t ; y0 given, κ > 0, (72)

15Cox-Ingersoll-Ross(1985)
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and consider a quadratic function of yt with constants â, b, c:

â+ byt +
1

2
cy2t =

c

2

(
yt +

b

c

)2

+

(
â− b2

2c

)
=
c

2
x2t + a, (73)

in which xt = yt +
b
c
, a = â− b2

2c
, and

dxt = κ(θ − xt)dt+ σdBQ
t ; θ = θ̂ +

b

c
. (74)

Thus, an interest rate model, determined by a quadratic function (73) of factor y which
follows a mean-reverting Gaussian process (72), is represented by

dxt = κ(θ − xt)dt+ σdBQ
t ; x0 given, κ > 0, (75)

rt = a+
1

2
cx2t ; a, c ∈ R; c ≥ −

(κ
σ

)2
. (76)

This is the quadratic-Gaussian part of the interest rate model ((1) and (2)) in Section
2 with appropriate modification. Hereafter, we consider the above model for a term
structure of interest rates.

Let P (t, T ) denote a zero coupon bond price at time t with maturity T (t ≤ T ), and
define Pt(τ) := P (t, T ) with τ = T − t. Then, we would like to obtain

Pt(τ) = EQ
[
e−

∫ t+τ
t rudu|Ft

]
, (77)

Yt(τ) =
−1

τ
logPt(τ). (78)

Next, we conjecture that

P (t, T ) = P (xt, t, T ) = exp

[
A(T − t) +B(T − t)xt + C(T − t)

x2t
2

]
. (79)

Since P (xt, t;T )e
−

∫ t
0 rudu is a martingale underQ, after applying Ito’s formula to P (xt, t;T )e

−
∫ t
0 rudu

and setting the drift term to be zero, it is enough to solve the following ODEs to obtain
A(τ),B(τ),C(τ):

C ′(τ) + 2κC(τ)− σ2C2(τ) + c = 0; C(0) = 0, (80)

B′(τ) + κB(τ)− κθC(τ)− σ2B(τ)C(τ) = 0; B(0) = 0, (81)

A′(τ)− κθB(τ)− 1

2
σ2B2(τ)− 1

2
σ2C(τ) + a = 0; A(0) = 0 (82)

Then, C(τ) is given as follows:

C(τ) = C0 +
1

z(τ)
; C0 =

κ+
√
κ2 + cσ2

σ2
, (83)

z(τ) =
σ2

α
− eατ

(
1

C0

+
σ2

α

)
; α = 2(κ− σ2C0) = −2

√
κ2 + cσ2. (84)
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Given C(τ), we have B(τ) as

B(τ) =
κθ

σ2

[
e

ατ
2 (1 + C2)

1 + C2eατ
− 1 + κ

2e
ατ
2 {1− e

−ατ
2 + C2(e

ατ
2 − 1)}

α(1 + C2eατ )

]
, (85)

C2 =
α

σ2
z(0)− 1; z(0) =

−1

C0

. (86)

In particular, when θ = 0, B(τ) ≡ 0.
Then, given C(τ) and B(τ), we obtain A(τ) as follows:

A(τ) = κθ

∫ τ

0

B(s)ds+
σ2

2

∫ τ

0

B2(s)ds+
σ2

2

∫ τ

0

C(s)ds− aτ, (87)

where

σ2

2

∫ τ

0

C(s)ds =
1

2

{(
κ+

α

2

)
τ + ln

(1 + C2)

(1 + C2eατ )

}
. (88)

Here, we note that since α = −2
√
κ2 + cσ2 < 0 with eατ < 1 and C0 > 0, we have

1 + C2 =
α
σ2 z(0) =

2
√
κ2+cσ2

C0σ2 > 0, and 1 + C2e
ατ = (1− eατ ) + 2

√
κ2+cσ2

σ2C0
eατ > 0.

Finally, we remark that a = 0 and θ = 0 (i.e. B(τ) ≡ 0) in our empirical analysis of
the main text. Moreover, setting x̂t :=

xt√
2
, we have

dx̂t = −κx̂tdt+
σ√
2
dBQ

t , (89)

and then redefining x̂t as xt with σx ≡ σ√
2
provide the equations (2) and (6) in Section 2.

(Here, the subindex j is omitted for simplicity.)

C Estimation of Trend and Correlation in Noisy Time

Series Data

This appendix introduces a new method for estimation of trends in time series and their
correlations, which is based on the Separating Information Maximum Likelihood (SIML)
method applied in Section 3.3.

First, we briefly explains the SIML method by using a simple case. (See Kunitomo
et. al. (2018) for more general cases.) Let us suppose that observed time series (xt)

n
t=1

and (yt)
n
t=1 are generated by the following stochastic processes, each of which is a sum of

a stationary process ex (ey) and a non-stationary process µx (µy):

xt = µx,t + ex,t, (90)

yt = µy,t + ey,t, (91)

µx,t = µx,t−1 + ηx,t, (92)

µy,t = µy,t−1 + ηy,t, (93)

where each of ηx,t, ηy,t is i.i.d. normal with mean 0 across time t, and the correlation
between ηx,t and ηy,t is given as a constant ρxy for all t. Then, we define a SIML correlation
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estimator corSIML(x, y) for ρxy as follows:

corSIML(x, y) =

∑m
i=1 zx,izy,i√

(
∑m

i=1 z
2
x,i)(

∑m
i=1 z

2
y,i)

, (94)

where with x = (x1, x2, · · · , xn)⊤, y = (y1, y2, · · · , yn)⊤, zx = (zx,1, zx,2, · · · , zx,n)⊤ and
zy = (zy,1, zy,2, · · · , zy,n)⊤ are defined as

zx = PnC
−1
n (x− x0) (95)

zy = PnC
−1
n (y − y0), (96)

and m = ⌊nα⌋ with α = 0.45.16 Here, C−1
n is an n× n-matrix representing the first-order

difference, and Pn is an n × n-orthogonal matrix such that C−1
n C⊤−1

n = PnDnP
⊤
n with a

diagonal matrix Dn. That is,

C−1
n =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 0 · · ·
0 0 −1 1 0
0 · · · 0 −1 1

 (97)

Pn = (pij)1≤i,j≤n (98)

pij =

√
2

n+ 1/2
cos

[
2π

2n+ 1
(i− 1

2
)(j − 1

2
)

]
. (99)

To detect a trend component in each x and y, we use zx,i, zy,i only with i = 1, · · · ,m(< n)
(e.g. m = 22 out of n = 977 in an example below) for an estimation, because zi with
smaller i contains information about a longer cyclic component.

Next, we introduce a new method to estimate trends and their correlations. Concretely,
we estimate trend series by Tx for x and Ty for y that are defined as as follows:

Tx = CnP
⊤
m,nPm,nC

−1
n x, (100)

Ty = CnP
⊤
m,nPm,nC

−1
n y, (101)

in which

Pm,n = (pij) (i = 1, · · · ,m, j = 1, · · · , n). (102)

Then, it is easily seen that a standard sample correlation between the first-order
differences of these trend series is same as a SIML correlation estimator, i.e.

cor(C−1Tx, C
−1Ty) = corSIML(x, y). (103)

16α ∈ (0, 0.5) gives asymptotic consistency for the SIML correlation estimator.
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Figure 14: time series plot for log-frequencies of “fiscal conditions (zaisei) & foreign
(gaikoku)” (x) and the steepening factor x21 estimated by “two-factor Gaussian minus
Quadratic-Gaussian” model (y, right axis)

Next, we apply our method to a text mining analysis in Section 3.3, particularly, the
observed log-frequency of two-word set ”fiscal conditions (zaisei) & foreign (gaikoku)”
as x, and the steepening factor x21 estimated in Section 3.1 as y. We remark that since
our estimate of the mean-reversion speed in the system equation (17) is κ1 = 0.129,
which implies that the autoregressive coefficients for x1,t and yt = x21,t (i.e. e

−κ1∆t and
e−2κ1∆t with ∆t = 1/250) are close to 1, we may regard the time series (x1,t)t=1,··· ,n and
(yt)t=1,··· ,n with n = 977 as non-stationary processes. In fact, given the estimated time
series (yt)t=1,··· ,n, a null hypothesis, β = 0 is not rejected at 10% significant level in a
simple regression equation: yt − yt−1 = α + βyt−1 + ϵt (ϵt ∼ i.i.d. N(0, σ2

ϵ )).
Figure 14 shows the result. It is observed that the estimated trends Tx and Ty show

similar movements, which is captured by the SIML correlation, 0.62 as reported in Figure
3. In contrast, because the observed two-word set’s frequency suffers from large noises,
the standard sample correlation between the first-order differences of x and y is only 0.02.
Moreover, the correlation between levels of those trends, i.e. Tx and Ty becomes very high
(0.86), while the standard sample correlation is 0.59 as reported in Figure 3. Further,
since the estimated x21 has relatively small noises, the correlation between Tx and y is also
high (0.83).

We finally remark that the method described in this section is expected to be effective

39



with relatively little computational burden in detecting trends and long-term relationships
embedded in very noisy time series data such as word frequencies.
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