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Stability of Sunspot Equilibria under Adaptive
Learning with Imperfect Information

Abstract

This paper investigates whether sunspot equilibria are stable under
agents’ adaptive learning with imperfect information sets of exogenous
variables. Each exogenous variable is observable for a part of agents and
unobservable from others so that agents’ forecasting models are heteroge-
neously misspecified. The paper finds that stability conditions of sunspot
equilibria are relaxed or unchanged by imperfect information. In a basic
New Keynesian model with highly imperfect information, sunspot equi-
libria are stable if and only if nominal interest rate rules violate the Taylor
principle. This result is contrast to the literature in which sunspot equi-
libria are stable only if policy rules follow the principle, and is consistent
with the observations during past business cycles fluctuations.

JEL classification: C62; D83; E52

Keywords: Sunspot equilibria; Stability; Adaptive learning; Private
information; Heterogeneous beliefs; Taylor principle
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1 Introduction

Sunspot-driven business cycle models are popular tools to account for the

features of macroeconomic fluctuations that are not explained by funda-

mental shocks. US business cycles in the pre-Volcker period are considered

to be driven by self-fulfilling expectations, so-called ”sunspots” (see Ben-

habib and Farmer, 1994; Farmer and Guo, 1994). Those non-fundamental

expectations are considered to stem from the Fed’s passive stance to infla-

tion (see Clarida, Gali, and Gertler, 2000; Lubik and Schorfheide, 2004).

Even recently, global financial turmoils in the last decade had historic

magnitudes that could not be explained by fundamental reasons, and

hence it is analyzed in models with sunspot expectations (see Benhabib

and Wang, 2013; Gertler and Kiyotaki, 2015).1

In conjunction with the increasing focus on business cycle models with

sunspot equilibria, the empirical plausibility of those models has been

tested in more plausible frameworks of expectations formation than ratio-

nal expectations (REs). A stream of the literature examines the stability

of sunspot equilibria under adaptive learning, where it is assumed that

agents have no knowledge of the structure of the economy enough to form

rational expectations so that they form their expectations by estimating

econometric models with available data (Evans and Honkapohja, 2001).

Woodford (1990) is the first study that found stable sunspot equilibria

under adaptive learning. Evans and McGough (2005c) show that non-

fundamental equilibria can be stable under serially correlated sunspot

shocks. Other studies provide stability conditions imposed on structural

or policy parameters in standard business cycle models.

On the other hand, there has been found the so-called stability puzzle:

that is, those parameter conditions are not satisfied in calibrated busi-

ness cycle models (see Evans and McGough, 2005a). There has been the

conventional wisdom that sunspot equilibria are unstable in real business

cycle (RBC) models. Duffy and Xiao (2007) show that stability condi-

tions obtained in RBC models contradict the parameter restrictions that

1Non-fundamental fluctuations are also empirically observed in the Great Recession
in the US of the late 2000s (see Farmer, 2012a,b); the housing bubble in the US of
the late 2000s (Miao and Wang, 2012); the European debt crisis in the early 2010s
(Bacchetta, Tille, and van Wincoop, 2012).
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ensure the positive feedback of expectations in those models.2 A similar

puzzle is observed in New Keyensian (NK) models. Evans and McGough

(2005b) find that stability conditions, if any, include the active monetary

policy rule that follows so-called the Taylor principle, that is, to raise the

nominal interest rate more-than-one-for-one in response to an increase in

the inflation rate. However, this result contradicts not only the positive

feedback restriction, but also the historical evidence that during the past

business cycles that were suspected to be non-fundamental, central banks

adopted the passive policy rule that does not respond to inflation aggres-

sively.3 In this sense, the empirical plausibility of sunspot equilibria has

not been fully confirmed in the framework of adaptive learning.

This paper analytically investigates the stability of sunspot equilib-

ria under adaptive learning in standard business cycle models. Following

the manners of Marcet and Sargent (1989a) and Nakagawa (2015), the

paper incorporates the private information of exogenous variables that

make agents’ information sets limited and heterogeneous, and examines

whether the stability conditions of sunspot equilibria are affected by the

imperfect information of exogenous variables. Next, the paper analyzes a

basic NK model with imperfect information to examine whether the im-

perfect information helps obtain empirically plausible stability conditions

imposed on monetary policy rules.

Imperfect information of exogenous variables has been little consid-

ered in the analysis of sunspot equilibria under adaptive learning, but the

imperfect information is reasonable to think of as a factor to affect the

dynamics of sunspot equilibria. The empirical evidence of imperfect infor-

mation of fundamental shocks has been well provided (e.g., Mankiw, Reis,

and Wolfers, 2003; Madeira and Zafar, 2015), and in the literature of ra-

tional expectations, it is well demonstrated that self-fulfilling fluctuations

are driven by the private information of fundamental shocks in financial

2See also Branch and McGough (2004), Evans and McGough (2005a), Shea (2013,
2016), and Ji and Xiao (2017). Exceptionally, McGough, Meng, and Xue (2013) show
a situation where sunspot equilibria are stable in RBC models.

3Negative feedback conditions are obtained by Evans and McGough (2005c), Shea
(2013, 2016), and Berardi (2015). Non-fundamental flucutuations under passive in-
terest rate rules were suspected for the US during the 1970s (see Clarida, Gali, and
Gertler, 2000; Lubik and Schorfheide, 2004; Belaygorod and Dueker, 2009), the EU
during the 1980s and 1990s (Hirose, 2013), and the China during 1990s and 2000s
(Zheng and Guo, 2013).
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markets (e.g., Jermann and Quadrini, 2012; Benhabib and Wang, 2013;

Gertler and Kiyotaki, 2015; Benhabib, Dong, and Wang, 2018). In ad-

dition, imperfect information of exogenous variables is more reasonable

in the framework of adaptive learning than rational expectations because

such imperfect information is highly possible in an environment where

agents have no knowledge of the structure of the economy.4 Accordingly,

Nakagawa (2015) investigates the stability of a fundamental equilibrium

with the imperfect information introduced in the present paper and shows

that the stability is improved by the imperfect information of exogenous

variables. The same mechanism is expected to work in the dynamics of

sunspot equilibria as well.

This paper finds that the existence of imperfect information provides

nonnegative effect on the stability of sunspot equilibria. Specifically, the

stability conditions of sunspot equilibria are relaxed or unchanged with

the degree of information imperfection. As a result, sunspot equilibria can

be stable in calibrated business cycle models. In calibrated NK models, if

information is highly imperfect, sunspot equilibria are stable if and only

if nominal interest rate rules violate the Taylor principle. This result

resolves the stability puzzle in the sense that they are consistent with the

observations during past business cycles fluctuations.

Our paper is closely related to the literature on sunspot restricted per-

ceptions equilibria (RPEs), where agents’ information sets of economic

variables are limited.5 The advantage of our model is to define the de-

grees of limitation and heterogeneity of agents’ information sets so that

describes a broad class of information structures, not only limited infor-

mation sets, but also, for example, the private information that has been

considered by Marcet and Sargent (1989a).6 In addition, the paper pro-

4The difficulty in identifying the processes of fundamental shocks without such
knowledge are well recognized in the time-series literature (e.g., Giannone and Reichlin,
2006; Alessi, Barigozzi, and Capasso, 2011). The difficulty might be demonstrated by
the fact that the consensus about the source of the Great Depression in the 1930s was
established more than six decades later (see Eichengreen, 1992).

5The related literature also considers the partial or asymmetric information of ex-
ogenous variables (e.g., Adam, 2003; Branch, McGough, and Zhu, 2017), the asymmet-
ric information of endogenous variables (e.g., Adam, Evans, and Honkapohja, 2006),
and the partial or asymmetric information of sunspot variables (e.g., Guse, 2005; Be-
rardi, 2009).

6Marcet and Sargent (1989a) analyze the perpetually and symmetrically uninformed
model in the framework of adaptive learning, and this model is originally developed
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vides analytical results on the relationships between those degrees and

the stability of sunspot equilibria. Thus, the results of our paper are ap-

plicable to models with a variety of imperfect information of exogenous

variables.7

The contribution of the paper is to find a relationship between the

imperfect information of fundamental shocks and self-fulfilling fluctua-

tions in the framework of adaptive learning. In the RE framework, many

studies demonstrate that sunspot equilibria stem from the information

imperfection of fundamental shocks. In particular, after the financial

turmoils in the last decade, self-fulfilling fluctuations are considered to

be driven by the financial frictions that are induced by the existence of

private information of fundamental shocks in financial markets. In their

frameworks, the imperfect information makes sunspot equilibria station-

ary. In our framework, the imperfect information makes those equilibria

stable.

Finally, our results reinforce the nonnegative effect of imperfect in-

formation on the stability of an equilibrium. In the same information

framework, Nakagawa (2015) shows that the stability of a fundamental

equilibrium is similarly affected by the information imperfection. Thus,

the present paper suggests that regardless of a fundamental or sunspot

equilibrium, the information imperfection of exogenous variables has non-

negative effects on its stability.

The paper is structured as follows. The next section presents our

model and stationary sunspot equilibria attainable under rational expec-

tations. Section 3 provides a benchmark analysis under adaptive learning

with perfect information to confirm conventional results. Section 4 ob-

tains the stability conditions under imperfect information and clarify the

effect of imperfect information on the stability of sunspot equilibria. Sec-

tion 5 provides stability conditions in a multivariate model. Section 6

applies our analytical results to a New Keynesian model. Finally, the

by Lucas (1972), Townsend (1983), and Pearlman and Sargent (2005). Note that the
stability of sunspot equilibria was beyond the scope of the researches by Marcet and
Sargent (1989a).

7Our framework is different from the dynamic predictor selection model, which
premises homogeneity in agents’ information sets such that all agents choose among
the same list of econometric models (see Brock and Hommes, 1997; Branch and Evans,
2006; Berardi, 2015).
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paper presents our conclusions.

2 Model

To clarify the stability of sunspot equilibria under imperfect information

intuitively, this paper starts with a univariate reduced-form linear expec-

tations model. The analysis using a multivariate model will be shown in

Section 5.

The economy is represented by the dynamics of one endogenous vari-

able yt and the vector of serially correlated exogenous variables wt =

(w1t, . . . , wnt)
′.

yt = βE∗
t yt+1 + γwt, (1)

wt = Φwt−1 + vt. (2)

The standard deviation of wit for each i ∈ {1, · · · , n} is defined by σii > 0,

and the correlation matrix of wt is defined by Γ ≡ (
ρij

)
1≤i,j≤n

, where

ρij ∈ [0, 1] denotes the correlation between wi and wj, and ρij = ρji and

ρii = 1 for each i, j ∈ {1, . . . , n}. vt is the n × 1 vector of fundamental

shocks with means of zero that drive the stochastic process of wt.
8 The

parameter β is a nonzero scholar coefficient of E∗
t yt+1, γ = (γ1, ..., γn) is a

1×n coefficient matrix of wt, and Φ is an n×n matrix of autocorrelation

coefficients of wt. E∗
t is the operator of the expectation of yt+1 at time t,

which is not necessarily rational.

For ease of calculation, we impose regularity assumptions on these

parameters (see Appendix A): in particular,

Φ ≡ diag (ϕi)1≤i≤n ≥ 0 and Γ ≥ 0,

where 0 ≤ ϕi < 1 for all i. These assumptions are not crucial for our anal-

ysis, as most stationary linear models in the literature can be transformed

to satisfy these conditions.

To obtain stability conditions that are consistent with calibrated busi-

ness cycle models, the positive feedback of expectations is assumed as a

8Note that exogenous variables with nonzero and heterogeneous means can be
transformed to the form (1).
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plausible parameter restriction:

β > 0. (3)

Later in a multivariate model (Section 5), a corresponding restriction will

be assumed. Section 6.4 will show that calibrated NK models have this

feature.

In the framework of rational expectations (E∗
t = Et), a solution to the

system should be a stochastic process yt that satisfies Eqs. (1)–(2) and

has the general form (GF) representation:

yt = β−1yt−1 − β−1γwt−1 + εt, (4)

where εt+1 ≡ yt+1 − Etyt+1 is a martingale difference sequence (mds)

representing for agents’ forecast error and Etεt+1 = 0. Under Eq. (3), if

and only if

β > 1, (5)

the system is in the irregular case where there exist a non-explosive so-

lution for an arbitrary εt+1. In this case, the mds εt+1, which is called a

sunspot, and the solution is called a stationary sunspot equilibrium (SSE).9

The equilibrium of the economy is indeterminate given an initial state of

wt.

In the irregular case, if a quadratic equation associated with the sys-

tem has real roots, the GF representation (4) can be transformed to com-

mon factor (CF) representations (Evans and McGough, 2005c). In our

model, the associated quadratic equation of the system (i.e., βb2 − b = 0)

has real roots b =
{
0, β−1

}
so that for the root β−1, Eq. (4) is transformed

to a CF representation:

yt = (In − βΦ)−1 γwt + ξt, (6)

ξt = β−1ξt−1 + ε̃t, (7)

where ε̃t = εt − (In − βΦ)−1 γwt +
(
(In − βΦ)−1 − In

)
β−1γwt−1, and ξt

and ε̃t are also martingale difference sequences.10 We assume E (wtε̃t) =

9McGough and Nakagawa (2016) and Branch, McGough, and Zhu (2017) finds that
sunspot equilibria are stable under adaptive learning in the parameter region where
equilibrium is determinate under rational expectations.

10The SEEs (4) also have the other CF representation for the root b = 0, but the
instability of this representation is trivial and not discussed here.
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E (wtξt) = 0. If agents make an arbitrary forecast error εt leading to ξt,

there exists a stationary sunspot equilibrium for ξt.

Hereafter, we assume that agents believe the autocorrelated sunspot

(7) under adaptive learning and focus on the stability of sunspot equilibria

driven by ξt.

3 Sunspot equilibria under perfect infor-

mation

This section shows a benchmark analysis on the stability of sunspot equi-

libria under perfect information. We review the conventional wisdom that

sunspot equilibria are always unstable under adaptive learning. We also

confirm that if the steady state of the economy is observable, the result

is modified. The reader who is familiar with the benchmark results can

skip this section.

3.1 Adaptive learning

Suppose that agents do not have the knowledge of the economic structure

enough to coordinate on rational expectations. An alternative formation

of expectations is to form their forecasts E∗
t yt+1 by estimating econometric

models with all available data up to time t, {ys, w
′
s, ξs}t

s=1.
11 Following

the methodology of the learning literature, this paper assumes that agents

know the functional form of sunspot equilibria of CF representation (6)

and estimate the perceived law of motion (PLM) of the same form:

yt = a + cwt + dξt + et, (8)

where a is a constant term, c′ is the n-vector of coefficients for wt, and et

is an error term that is perceived to be white noise.12 For simplicity, we

assume that agents believe the same sunspot shock ξt in Eq. (7).

11Our analytical results are independent of whether a contemporaneous endogenous
variable yt is not used to form the forecast E∗

t yt+1 because the forecast (9) is not
determined by yt.

12Although agents could specify the PLM of GF representation, discussions about
sunspot equilibria of GF representation are skipped in this paper because they are
found to be unstable under adaptive learning (see Evans and McGough, 2005c).
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Using the estimated parameters φ′ ≡ (a, c, d), agents form the forecast:

E∗
t yt+1 = a + cΦwt + dβ−1ξt. (9)

The actual law of motion (ALM) of the economy is determined by incor-

porating Eq. (9) into Eq. (1) as

yt = βa + (βcΦ + γ) wt + dξt. (10)

3.2 Fixed point

We assume that in real-time learning, the parameters φ′
t = (at, ct, dt)

estimated at time t are optimal linear projections of yt−1 on z′t−1 ≡(
1, w′

t−1, ξt−1

)
that satisfy the following least-squares orthogonality con-

dition:

Ezt−1 (yt−1 − φ′
tzt−1) = 0.

The local dynamics of φ′ are governed by the associated ordinary differ-

ential equation (ODE) (see Evans and Honkapohja, 2001, chapter 6):

dφ

dτ
= T (φ) − φ, (11)

where τ denotes notional time and T (φ) is the mapping from the PLM

to the ALM:

T (φ) ≡ (
Ta (a) Tc (c) Td (d)

)
=

(
βa βcΦ + γ d

)
.

The fixed point of the ODE φ̄
′
=

(
ā, c̄, d̄

)
is

ā = 0, c̄ = (In − βΦ)−1 γ, d̄ = arbitrary. (12)

If the ODE (11) is locally asymptotically stable around the fixed point φ̄,

the parameters φt under real-time learning converge to the fixed point,

and the economy is determined at the process (10) with the fixed point

φ̄. d̄ is arbitrary so that there can exist stable sunspot equilibria un-

der adaptive learning, which are equivalent with sunspot REEs of CF

representation (6)–(7). Thus,

9



Lemma 1 Sunspot equilibria (12) under adaptive learning are stationary

if and only if Eq. (5).

Note that the fixed point of the constant term a corresponds to the

steady state of yt.
13 If the steady state is observable for agents, they do

not have to estimate this term, but they may fix it at the value of the

steady state. It is known that excluding the estimation of the constant

term could affect the stability of an equilibrium (see Bullard and Mitra,

2002; Ji and Xiao, 2017). In addition, standard macroeconomic models

assume that the knowledge of the steady state is held by agents.14 To

obtain robust implications to prevent the emergence of sunspot equilibria,

our paper will examine the stability of the equilibria in both cases of the

unobservable and observable steady state.

3.3 Stability conditions

The ODE is locally stable if and only if the eigenvalues of the Jacobians

regarding (a, c),

D (Ta (a) − a) = β − 1,

D (Tc (c) − c) = Φ ⊗ β − In,

have negative real parts:15

β < 1, (13)

βλ [Φ] < 1. (14)

The notation λ [X] denotes the largest value of the real parts of the eigen-

values of the matrix X and will be used throughout this paper. Eqs.

13If the mean of vt is nonzero, the fixed point of the constant term of the PLM
should be different from the steady state of yt. This case does not affect our analytical
results about the stability.

14For example, in New Keyensian models, the steady state of ouput is assumed to be
observable so that the central bank can control the nominal interest rate in response
to output gap, which is the difference between actual output and the steady state of
output. In addition, the steady state of the inflation rate is determined by the central
bank as the inflation target.

15Actually, the ODE can also be asymptotically stable if they have one or more zero
real parts of eigenvalues, which are ruled out in this paper as nongeneric cases.
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(13)–(14) are stability conditions of sunspot equilibria under adaptive

learning. The stability condition is represented by only Eq. (13) as

λ [Φ] = max {ϕi}1≤i≤n < 1.

Notice that Eq. (13) is the condition when the steady state of yt is

unobservable for agents. If the steady state is observable so that agents

may fix the constant term a at the value of the steady state, Eq. (14) is

the unique stability condition.

Combined with the stationary condition (5), the stability conditions of

stationary sunspot equilibria with perfect information are given as follows:

Proposition 1 Consider the system (1)–(2) with the stationary condi-

tion (5). When the steady state is unobservable, stationary sunspot equi-

libria of CF representation (12) are always unstable under adaptive learn-

ing with perfect information. When the steady state is observable, they

are locally stable if and only if

1 < β < λ [Φ]−1 . (15)

The left-hand-side of Eq. (15) comes from the stationary condition, and

the right-hand-side comes from the stability condition.

The proposition confirms the conventional result in the learning lit-

erature (see Duffy and Xiao, 2007; Ji and Xiao, 2017). It is commonly

assumed that agents specify PLMs with constant terms, which premises

the steady state to be unobservable. It leads to the instability of sunspot

equilibria in calibrated business cycle models.

This stability puzzle is partly resolved under the observable steady

state, but the stability condition (15) might not be consistent with cal-

ibrated parameters in business cycle models or empirical findings. For

example, if the largest autocorrelation coefficient of {wit}n
i=1 is so large

as 0.9, then the condition (15) is 1 < β < 1.11 · · · , which seem too nar-

row. In such a case, the stability puzzle cannot be resolved only by the

observable steady state.16

16Section 6.4 will show the possibility of this case in calibrated NK models.
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4 Sunspot equilibria with imperfect infor-

mation

In what follows, we relax the assumption of perfect information by intro-

ducing imperfect information about exogenous variables.

4.1 Private Information

To cover a variety of the information structures of exogenous variables,

this paper introduces the following type of private information, which is

incorporated in Nakagawa (2015) that follows the manner of Marcet and

Sargent (1989a):

Assumption 1 For each i ∈ {1, ..., n}, the evolution of the exogenous

variable {wis}t
s=1 is observable for agents of type i and unobservable for

agents of other types.

That is, each exogenous variable of the economy is privately observable for

a part of agents. Implicitly, it is also assumed that different types cannot

share any information of unobservable variables. Then, agents of type

i recognize the stochastic characteristics of observable variable wit, but

they recognize nothing about the unobservable variables {wjt}n
j=1,j ̸=i.

17

For simplicity, the population of each type is assumed to be the same at
1
n
.

This framework is a version of the perpetually and symmetrically unin-

formed model, which is originally developed by Lucas (1972), Townsend

(1983), and Pearlman and Sargent (2005), and first analyzed under adap-

tive learning by Marcet and Sargent (1989a). The Marcet and Sargent

17For example, the stochastic distributions of {wj}n
j ̸=i, the correlations of exogenous

variables
{
ρij

}n

i,j=1,i ̸=j
, and the number n of exogenous variables are unobservable

for other types of agents. If the correlations and the quantity of exogenous variables
were the common knowledge, agents could use those information in adaptive learning,
which should be different from the form described in this paper. This type of private
information describes a feature of the information of idiosyncratic fundamental shocks
at a microeconomic level: for example, a preference shock possessed by a household
(see Allen and Gale, 2004) and the profitability of a borrower in a financial market
(see Stiglitz and Weiss, 1981).
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(1989a)’s model incorporates the information imperfection of not only ex-

ogenous variables, but also endogenous variables. Assumption 1 allows

only the former imperfection to obtain analytical results of the effect of

information imperfection.

The advantage of our framework is that it covers not only private

information, but also a variety of the information structures of exogenous

variables. In this framework, the number n of exogenous variables defines

the degree of limitation in the information set of each agent; the larger n

is, the more limited each information set is relative to the full one.18 The

parameter 1 − ρij (or the correlation ρij) of the two exogenous variables

{wit, wjt} for each i, j ∈ {1, ..., n} defines the degree of the heterogeneity

(or homogeneity) in the information sets of types i and j; the smaller

ρij is, the more heterogeneous both information sets are.19 If n = 1 (no

limitation) or ρij = 1 (and hence ϕi = ϕj and wit

σii
=

wjt

σjj
) for all i, j (no

heterogeneity), the information sets of all types are reduced to the full

information set in Section 3, and the analysis of this section covers the

benchmark analysis of Section 3 as a special case. In addition, a broad

class of the information imperfection of exogenous variables considered

in the literature is reproduced by accommodating the characteristics of

{wit}n
i=1 (here, n,

{
ρij

}n

i,j=1
, and {ϕi, σii}n

i=1).
20 Thus, the effects of the

private information that will be found in this paper are robust in those

other information structures.

4.2 Adaptive learning

Let us describe adaptive learning by the agent of type i with the imperfect

information set {ys, wis, ξs}t
s=1, which is limited and different from the

information sets held by other types in terms of {wit}n
i=1. We assumes

18For private information to exist for each type of agents, the number of unobservable
variables (n − 1) must be greater than the number of endogenous variables (m). In
the case where m = 1, n > 2 must be satisfied.

19Although the degree of heterogeneity in the information sets of all types cannot
be represented by a single scalar measure, we will say that the degree of heterogeneity
in the information sets of all types increases if ρij falls for at least one (i, j) and falls
or remains the same for every (i, j).

20Nakagawa (2015) demonstrates that this framework reproduces, as examples, par-
tial information sets seen in the RPE literature, asymmetric information sets, and
different populations of the types of agents.
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that the agent recognizes the correct form of sunspot equilibria (8), and

that the agent is constrained to specify an underparameterized PLM:

yt = ai + ciwit + diξt + eit. (16)

For simplicity, we assume that agents of all types believe the sunspot

variable ξt in Eq. (7). Using the estimated parameters, the forecast of

agent i at time t is formed as

E∗
ityt+1 = ai + ciϕiwit + diβ

−1ξt, (17)

where E∗
it is the operator of expectations formed by type i at time t.

Nakagawa (2015) names this learning heterogeneously misspecified (HM)

learning. The PLM and the forecast of each type is heterogeneously mis-

specified to the same degree as the degrees of information imperfection.

The degree of misspecification in the PLM/forecast of each type is spec-

ified one-to-one by the degree of limitation of each information set (that

is, n). The degree of heterogeneity in the PLMs/forecasts of types i and j

is specified one-to-one by the degree of heterogeneity of information sets

of both types (that is, 1 − ρij).

The forecast E∗
t yt+1 in Eq. (1) is determined by the average of the

forecasts of all types of the form (17). Following the same populations of

different types, let us assume that forecasts of different types {E∗
ityt+1}n

i=1

have equal contributions to the dynamics of the economy. Then, the

forecast E∗
t yt+1 is formulated to have the same form as the one under

perfect information (9):

E∗
t yt+1 = a + cΦwt + dβ−1ξt, (18)

where E∗
t is the operator of the average of heterogeneous forecasts E∗

t =
1
n

∑n
i=1 E∗

it, and a ≡ 1
n

∑n
i=1 ai, d ≡ 1

n

∑n
i=1 di are the averages of the

constant terms and coefficients for all types, and c ≡ 1
n

(c1, · · · , cn) is an

1 × n matrix that combines the coefficients {ci}n
i=1 of the PLMs of the

form (16) for all types and multiplies them by 1
n
.

The ALM is obtained by substituting Eq. (17) into the system (1)–(2):

yt = βa + (βcΦ + γ) wt + dξt. (19)
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4.3 Fixed point

As in Section 3, the parameters of type i, φ′
it = (ait, cit, dit) are assumed

to be optimal linear projections of yt−1 on z′i,t−1 ≡ (
1, wi,t−1, ξi,t−1

)
that

satisfy the following least-squares orthogonality condition,

Ezi,t−1 (yt−1 − φ′
itzi,t−1) = 0,

such that the misspecification in the PLM (16) is not detected.

The local dynamics of φi in real-time learning is inferred from the

stochastic recursive algorithms of φi formulated by the PLM (16) and the

ALM (19). As a result, the dynamics of the parameters of all types are

represented by the dynamics of the aggregate parameters φ′ = (a, c, d),

which are governed by the following ODE:

dφ

dτ
= T (φ) − φ, (20)

where

T (φ) ≡ (
Ta (a) Tc (c) Td (d)

)
=

(
βa (βcΦ + γ)

(
1
n
Ψ

)
d

)
,

and

Ψ ≡ diag (σii)1≤i≤n · Γ · diag (σii)
−1
1≤i≤n .

The derivation of the ODE is shown in Appendix B. Mapping T (φ) pro-

vides the coefficients of the forecasts of yt updated by agents of all types.

The fixed points φ̄
′
=

(
ā, c̄, d̄

)
are

ā = 0, c̄ = (βc̄Φ + γ)

(
1

n
Ψ

)
, d̄ = arbitrary. (21)

If the ODE is locally stable at the fixed point φ̄, the aggregate parameters

φt under real-time learning converge to the fixed point, and the economy

is determined with Eqs. (19) and (21). The fixed point d̄ is arbitrary

so that the sunspot shock ξt drives sunspot equilibria under imperfect

information as well as the ones under perfect information, and even under

information imperfection, Eq. (5) is the stationary condition for sunspot

equilibria.

The effect of information imperfection on the fixed point is represented

by
(

1
n
Ψ

)
. If there exists no imperfect information (that is, n = 1 or

15



{
ρij = 1

}n

i,j=1
for all i, j), all the specifications in this section is reduced

to the ones under perfect information in Section 3.

Let us define the equilibria (21) as sunspot heterogeneous misspecifi-

cation equilibria (hereafter, sunspot HMEs).

Definition 1 The sunspot HME is a stochastic process for {yt}∞t=0 fol-

lowing the system (1)–(2) given that {E∗
t yt+1}∞t=0 is the average of the

forecasts formed by the PLMs of the form (16) for all i with the param-

eters {φ′
i = (ai, ci, di)}n

i=1 determined at the fixed point (21) of the ODE

(20).

4.4 Stability conditions

The stability of sunspot HMEs is subject to whether the aggregate pa-

rameters φ′ ≡ (a, c, d) converge to the fixed point. They are locally stable

if and only if the eigenvalues of the Jacobians of the ODE (20) regarding

(a, c),

D (Ta (a) − a) = β − 1,

D (Tc (c) − c) =

(
Φ

(
1

n
Ψ

))′
⊗ β − In,

have negative real parts:

β < 1, (22)

βΛ < 1, (23)

where

Λ ≡ λ

[
Φ

(
1

n
Ψ

)]
= λ

[
Φ

(
1

n
Γ

)]
< 1.

The effect of information imperfection on the stability is represented

by the parameter Λ. Nakagawa (2015, Lemma 1, Remark 1) proves

that the parameter Λ depends on the degrees of information imperfec-

tion
(
n,

{
ρij

}n

i,j=1

)
as follows:

Lemma 2 For each n ≥ 1 and i, j ∈ {1, · · · , n},

16



1. all eigenvalues of Φ
(

1
n
Γ
)

are real and exist in the interval [0, 1);

2. Λ ≤ λ [Φ] with equality iff n = 1 or ρij = 1 for all i, j.

3. dΛ
dϕi

≥ 0;

4. dΛ

d(1−ρij)
≤ 0;

5. dΛ
dn

≤ 0 with the equality iff ρ = 1 or ϕ = 0, if

ϕi = ϕ ∈ [0, 1) for all i, (24)

ρij = ρ ∈ [0, 1] for all i, j and i ̸= j. (25)

Lemma 2.1 means that 0 ≤ Λ < 1. Then, if the steady state is unobserv-

able, the stability condition is represented by Eq. (22). Otherwise, the

stability condition is represented by Eq. (23). Lemma 2.2 indicates that if

there exists no information imperfection (that is, n = 1 or
{
ρij = 1

}n

i,j=1

for all i, j), the stability condition (23) is reduced to the one under perfect

information (14).

Combined with the stationary condition (5), the stability conditions

of stationary sunspot equilibria under imperfect information are given as

follows:

Proposition 2 Consider the system (1)–(2) satisfying the stationary con-

dition (5). When the steady state is unobservable, stationary sunspot

equilibria (21) are always unstable under adaptive learning with imperfect

information. When the steady state is observable, they are locally stable

if and only if

1 < β < Λ−1. (26)

Note that under no imperfect information, the proposition is reduced to

Proposition 1.

The proposition suggests that in a model with the unobservable steady

state, sunspot equilibria are always unstable under adaptive learning.

This result is independent of the existence of imperfect information.

When the steady state is observable, the stability of sunspot equilibria

is affected by imperfect information as follows:

17



Corollary 1 Suppose that the steady state is observable. For each n ≥ 1

and i, j ∈ {1, · · · , n}, the stability condition (26) is unchanged or relaxed

upwards by an increase in the degree of heterogeneity 1− ρij in the infor-

mation sets of types i and j for each i, j. The condition is unchanged or

relaxed upwards by an increase in the degree of limitation n of the infor-

mation set of each type if exogenous variables have the same stochastic

characteristics as Eqs. (24)–(25).

The proof is trivial by Lemmas 2.4 & 2.5. That is, the heterogeneity and

limitation of information sets have nonnegative effects on the stability of

sunspot equilibria so that they can be stable in the economy with a large

positive feedback of expectations.

These results clarify a channel through which self-fulfilling business

cycle fluctuations happens under the imperfect information of fundamen-

tal shocks. Similar mechanisms have been demonstrated in a bunch of

the rational expectations literature (e.g., Jermann and Quadrini, 2012;

Benhabib and Wang, 2013; Gertler and Kiyotaki, 2015), where imperfect

information gives an positive effect on the stationarity of sunspot equi-

libria. Our results show that imperfect information has an additional

effect of improving the stability of those equilibria. Thus, under either

framework of expectations formation, the economy with highly imperfect

information is inclined to experience self-fulfilling fluctuations.

Our results also provide a policy implication that even if a particular

policy prevented self-fulfilling fluctuations, it might be ineffective under

imperfect information. In such a situation, the government should modify

the policy to increase the feedback of expectations (β) to prevent them.

4.5 Discussion

The nonnegative effect of imperfect information is intuitive. The effect

of heterogeneity results from the reductions in the extent of the updat-

ing of the parameters {ci}n
i=1. Suppose that an exogenous variable wit

evolves. Without heterogeneity, all types of agents update {ci}n
i=1 to the

same degree. In contrast, in the presence of heterogeneity because of the

imperfect correlations of {wit}n
i=1, the types except type i do not update

{cj}n
j ̸=i to the same degree as the updating of ci. These reductions make
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the aggregate forecast E∗
t yt+1 and the economy yt less responsive to the

evolution of wt so that they produce a feedback that helps the parame-

ters to converge. Similarly, the effect of misspecification results from the

reductions in the extent of the updating of {ci}n
i=1. Without misspecifi-

cation (n = 1), agents update {ci}n
i=1 in response to the evolution of each

variable. In the presence of misspecification (n > 1), agents update only

if their observable variables evolve.21

This mechanism is illustrated in brief calibrations. Assume β = 1.5

and E
(
ξ2

t

)
= 1. Suppose the same stochastic characteristics of exogenous

variables in Eqs. (24) and (25): ϕi = 0.9, E (w2
it) = 1, γi = 1 for all i and

ρij = ρ for all i ̸= j.

Figure 1 shows the calibrations of the updating of the parameter cit

and the adjustment of endogenous variable yt in response to a one-time

evolution of w1,0 = 1 under different degrees of heterogeneity of agents in-

formation sets. The initial values of parameters (a, c, d) are set at (0, 0, 1).

The degree of limitation (n) is fixed at 10. The stability condition under

the observable steady state (26) is ρ < 0.71. In the figure, the response

of yt to the evolution of w1 is reduced as the degree of heterogeneity

(1 − ρ) increases. This reduction makes the updating of ct sluggish so as

to converge. On the other hand, if 1 − ρ is lower than the threshold, the

response of yt and the updating of ct are so large as to explode.

Figure 2 shows calibrations under different degrees of limitation of

agents’ information sets. Here, 1−ρ is fixed at 0.3, and the other settings

are unchanged. The stability condition under the observable steady state

is n > 7.36. In the figure, the response of yt is also reduced as n increases.

It makes the updating of ct sluggish enough to converge.

These effect works even if the steady state is observable for a small

proportion of agents, although its observability for all agents has been

assumed for simplicity of our analysis. If the proportion of agents who

observe the steady state is assumed to be p ∈ [0, 1], the stability condition

of the constant term (22) is modified to β (1 − p) < 1 and the condition

of c (28) is unchanged. If p > 1−λ [Φ], the stability condition of sunspot

equilibria is represented by Eq. (28), which is affected by imperfect in-

21Note that even if n → ∞ such that each wit has a negligible impact on the
economy, {ci}n

i=1 do not necessarily converge to zero, but continue to be updated
because {wit}n

i=1 are correlated.
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Figure 1: The updating of the parameter cit and the adjustment processes
of yt under different digrees of information heterogeneity

formation. If, for example, ϕi = 0.9 for all i, then p > 1 − λ [Φ] = 0.1:

the information imperfection is effective if the steady state is observable

for more than ten percent of agents.

5 Stability conditions in a multivariate model

The previous results in the univariate model are easily generalized in a

multivariate model. Let us consider the following m−variate system:

yt = BE∗
t yt+1 + Cwt, (27)

wt = Φwt−1 + vt, (28)

where yt is an m×1 matrix, B is an m×m matrix, C is an m×n matrix,

and other things are exactly the same as before. det (B) ̸= 0 is assumed.

Let us also assume the system (27)–(28) to have the positive feedback

of expectations, that is, the eigenvalues of B have all positive real parts.
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Figure 2: The updating of the parameter cit and the adjustment processes
of yt under different degrees of information limitation

This is represented by22

λ [−B] < 0. (29)

Agents of type i are assumed to specify the same form of PLM as Eq.

(16); here ai is an m × 1 matrix, ci is an m × 1 matrix, di is an m × 1

matrix, and eit is an m × 1 matrix.23 We assume that agents believe a

sunspot shock ξt

ξt = θ−1ξt−1 + ε̃t,

where θ denotes either of the nonzero real eigenvalues of matrix B, if any.

The rest of the mechanism is the same as in Section 4.2. Then, the ALM

is obtained as

yt = Ba + (BcΦ + C) wt + Bθ−1dξt,

where a ≡ 1
n

∑n
i=1 ai, c ≡ 1

n
(c1, · · · , cn), and d ≡ 1

n

∑n
i=1 di.

22Note that λ [−β] ̸= −λ [β].
23The order two or more indeterminacy considered in Evans and McGough (2005c)

is not discussed in our paper.
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In this case, the associated ODE of φ′ = (a, c, d) is represented by the

same form as the ODE (20); here

T (φ) ≡ (
Ta (a) Tc (c) Td (d)

)
=

(
Ba (BcΦ + C)

(
1
n
Ψ

)
Bθ−1d

)
.

Then, the fixed point φ̄
′
=

(
ā, c̄, d̄

)
is obtained as

ā = 0, c̄ = (Bc̄Φ + C)

(
1

n
Ψ

)
, d̄ = sd̂, (30)

where d̄ is the product of an arbitrary real constant s and the real eigen-

vector d̂ corresponding to the eigenvalue θ, and there exist a continuum

of the fixed point d̄.

Corresponding to Lemma 1 in the univariate model,

Lemma 3 In the multivariate system (27)–(28), there exist sunspot equi-

libria of CF representation (30) if and only if either of the eigenvalues

of matrix B is real. If any, those equilibria are stationary if and only if

either of the real eigenvalues is outside the unit circle.

For sunspot equilibria to be locally stable under adaptive learning, the

Jacobians of the associated ODE regarding (a, c),

D (Ta (a) − a) = B − Im,

D (Tc (c) − c) =

(
Φ

(
1

n
Ψ

))′
⊗ B − Imn,

must have all negative real parts of eigenvalues, that is,

λ [B] < 1, (31)

λ [B] Λ < 1. (32)

Therefore, the stability condition of sunspot equilibria of CF repre-

sentation is given as follows:

Proposition 3 Consider the system (27)–(28) with the positive feedback

of expectations (29) and the real and stationary conditions in Lemma 3.

When the steady state is unobservable, those equilibria are always locally

unstable under adaptive learning. When the steady state is observable,

they are locally stable if and only if Eq. (32).
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Note that the instability under the unobservable steady state is trivial.

Matrix B must satisfy Eqs. (29) and (31); that is, the real parts of the

eigenvalues of B must be all inside the unit circle. This contradicts with

the conditions in Lemma 3.

6 Application to a New Keynesian model

This section shares stability conditions for sunspot equilibria in a basic

New Keynesian model:

xt = −α (it − E∗
t πt+1) + E∗

t xt+1, (33)

πt = κxt + ηE∗
t πt+1. (34)

The model has three endogenous variables: output gap xt, the inflation

rate πt, and the nominal interest rate it. Eq. (33) is a log-linearized in-

tertemporal Euler equation that is derived from the households’ optimal

choice of consumption. Eq. (34) is a Phillips curve with the forward-

looking component that is derived from the optimizing behavior of mo-

nopolistically competitive firms with Calvo price setting. α > 0, κ > 0,

and 0 < η < 1 are assumed. Demand and supply shocks are omitted

for simplicity of the analysis.24 Throughout this section, the observable

steady state is assumed because sunspot equilibria are unstable if the

steady state is unobservable.

We consider three types of nominal interest rate rules of the central

bank that are popular in the literature: a current-looking nominal interest

rate rule,

it = φππt + φxxt + wt, (35)

a forward -looking rule,

it = φπE∗
t πt+1 + φxE

∗
t xt+1 + wt, (36)

and a semi-forward -looking rule,

it = φπE∗
t πt+1 + φxxt + wt, (37)

24Our analytical results are robust to the incorpolation of demand or supply shocks
and their imperfect information. In that case, the NK model should have a different
form, which complicates our analysis.
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where wt is a monetary policy shock. The parameters φπ and φx are

controlled by the central bank, and φπ, φx ≥ 0 are assumed.

Under rational expectations,

κ (φπ − 1) + φx (1 − η) > 0 (38)

is the sufficient and necessary condition for determinate REE under the

current-looking rule and a necessary condition under the forward- and

semi-forward-looking rule (see Bullard and Mitra (2002, Propositions 1

& 4) and Appendix F). Eq. (38) is called the Taylor principle, the im-

portance of which is emphasized by Woodford (2003) and others. In

later analysis, stability conditions of sunspot equilibria will be not only

obtained, but also compared with the Taylor principle.

To introduce the imperfect information of exogenous variables, the

policy shock wt is assumed to be the aggregation of individual monetary

policy shocks: wt ≡ ∑n
i=1 wit. These shocks describe, for example, the

preference shocks of different policy board members of the central bank.25

The shock wit for each i ∈ {1, · · · , n} follows a persistent process: wit =

ϕiwi,t−1 + vit, where 0 ≤ ϕi < 1 and the disturbance term vit has a

zero mean. The correlation of wit and wjt is ρij ≥ 0 for each i, j ∈
{1, · · · , n}. If wit for each i is observable for all agents, they specify

correctly specified PLMs and homogeneous forecasts as in Eqs. (8)–(9).

If wit for each i is privately observable for 1
n

of agents and unobservable for

other agents, they specify underparameterized PLMs and heterogeneous

forecasts as in Eqs. (16)–(17). Following the assumptions given by Branch

and McGough (2009), the aggregate forecasts (E∗
t xt+1, E

∗
t πt+1) is given

by the averages of the forecasts of all types {(E∗
itxt+1, E

∗
itπt+1)}n

i=1 as in

Eq. (18).26

25In this example, each policy rule may be interpreted as the average of the policy
reaction functions of different members, and ϵt in each equation as the average of
exogenous beliefs of different members (see Riboni and Ruge-Murcia, 2008).

26In our model, the decision rules of agents underlying the NK model (33)–(34)
are identical except their expectations. Then, the NK model keeps the original form
while the aggregate forecasts are replaced with the average of the forecasts of different
agents (see Branch and McGough, 2009; Branch and Evans, 2011; Muto, 2011).
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6.1 Forward-looking Rule

To help our understanding, let us consider first the forward-looking rule

(36) and obtain the stability conditions imposed on the policy parameters.

Although the NK model is multivariate, the model with the forward-

looking rule can be transformed to a univariate version so that we provide

the results corresponding to Section 4. After that, the results of the

multivariate case will be provided.

6.1.1 Univariate version

We assume φx = α−1 to transform the model into:27

xt = −α (φπ − 1) E∗
t πt+1 − αwt, (39)

πt = (η − ακ (φπ − 1)) E∗
t πt+1 − ακwt. (40)

Then, the dynamics of the economy is solely determined by Eq. (40) of a

univariate equation of πt, which determines the equilibrium of xt in Eq.

(39). The coefficients in Eq. (40) correspond to the parameters in the

univariate system (1)–(2):

β = η − ακ (φπ − 1) ,

γ = ακ (1, · · · , 1) .

The stability condition in the NK model is provided by Proposition 2:

Proposition 4 Consider the NK model (33)–(34) and the forward-looking

rule (36) with the positive feedback of expectations (29), the observable

steady state, and φπ = α−1. Stationary sunspot equilibria of CF represen-

tation are locally stable under adaptive learning if and only if

1 − Λ−1 − η

ακ
< φπ < 1 − 1 − η

ακ
. (41)

The right-hand-side of the condition (41) is given by the station-

ary condition (5). This part corresponds to the violation of the Tay-

lor principle (38), which is consistent with the historical evidence that
27This simplification is seen in Evans and Honkapohja (2003), Ferrero (2007), and

Muto (2011).
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self-fulfilling business cycle fluctuations were synchronized with the pe-

riod when central banks adopted passive nominal interest rate rules (see

Introduction).28

The left-hand-side of the condition is given by the stability condition

(23). According to Corollary 1, this part is affected by imperfect infor-

mation as follows:

Corollary 2 For each n ≥ 1 and i, j ∈ {1, · · · , n}, the stability condition

(41) is unchanged or relaxed downwards by an increase in the degree of

heterogeneity 1 − ρij in the information sets of types i and j about the

monetary policy shocks {wit}n
i=1. The condition is unchanged or relaxed

downwards by an increase in the degree of limitation n of the information

set of each type if {wit}n
i=1 have the same stochastic characteristics as

Eqs. (24)–(25).

That is, the imperfect information in the NK model has an effect that

sunspot equilibria can be stable even if the policy rule is very passive.

Hence, if a high degree of imperfect information is considered, the im-

plausible feature of the stability condition (41) is resolved. The condition

means that sunspot equilibria are stable if the policy rule is moderately

passive such that φπ > 1 − Λ−1−η
ακ

, while they are unstable if the rule is

extremely passive such that 0 ≤ φπ ≤ 1 − Λ−1−η
ακ

. This result is clearly

inconsistent with empirical findings. However, if the degree of imperfec-

tion is high such that Λ ≤ 1
η+ακ

, the lower bound of the condition reaches

zero so that sunspot equilibria are stable under an arbitrary passive rule

of 0 ≤ φπ < 1. Thus, the imperfect information provides empirically

plausible stability conditions.

The results for the policy rule are summarized as follows:

Corollary 3 Consider the NK model in Proposition 4. When the infor-

mation sets of agents are enough limited and/or heterogeneous such that

Λ ≤ 1
η+ακ

, stationary sunspot equilibria are locally stable if and only if the

Taylor principle is violated.
28Without the assumptions of the observable steady state and the positive feed-

back restriction, the stability condition should be φπ > 1 + 1+η
ακ satisfying the Taylor

principle (see Evans and McGough, 2005b, Fig. 4).
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The corollary reinforces the importance of the Taylor principle to pre-

vent self-fulfilling fluctuations. In particular, the higher the degree of

imperfection, the more important the central bank follows the Taylor

principle.

6.1.2 Multivariate version

Let us consider the case of removing the restriction φx = −α−1. The NK

model (33)–(34) with the forward-looking rule (36) is represented in the

following multivariate form:[
xt

πt

]
= BfEt

[
xt+1

πt+1

]
− α

[
1
κ

]
wt,

where

Bf ≡
[

1 0
−κ 1

]−1 [
1 − αφx −α (φπ − 1)

0 η

]
.

Stability conditions are obtained using Proposition 3 as follows:

Proposition 5 Consider the NK model (33)–(34) and the forward-looking

rule (36) with the positive feedback of expectations (29) and the observable

steady state. Stationary sunspot equilibria of CF representation exist and

are locally stable under adaptive learning if and only if

−(1 − Λ) (1 − η (1 − αφx) Λ)

αΛ
< κ (φπ − 1) + φx (1 − η) < 0, (42)

φx ≤ α−1, (43)

The derivation is shown in Appendix C, and the proposition covers Propo-

sition 4 as the special case of φx = α−1. Figure 3 describes the stability

conditions (42)–(43).

The features of the stability condition in the univariate case (Proposi-

tion 4 and Corollaries 2 & 3) are robust in the multivariate case. Sunspot

equilibria are stable only if the policy rule violates the Taylor principle

(38). As the degree of information imperfection increases so that Λ is de-

creases, the lower bound of the condition (42) decreases. If the degree of

imperfection is very high, sunspot equilibria are locally stable if and only
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Figure 3: Stability condition under the forward-looking rule.

if the Taylor principle is violated and the condition (43) is satisfied. Un-

der the purely forward-looking rule (φx = 0), the violation of the Taylor

principle is the necessary and sufficient condition.

6.2 Current-looking rule

The NK model (33)–(34) with the current-looking rule (35) is represented

in the following form:[
xt

πt

]
= BcEt

[
xt+1

πt+1

]
−

[
1 + αφx αφπ

−κ 1

]−1 [
α
0

]
wt,

where

Bc ≡
[

1 + αφx αφπ

−κ 1

]−1 [
1 α
0 η

]
.

Stability conditions are obtained by Proposition 3 as follows:

Proposition 6 Consider the NK model (33)–(34) and the current-looking

rule (35) with the observable steady state. Stationary sunspot equilibria
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Figure 4: Stability condition under the current-looking rule.

of CF representation exist and are locally stable under adaptive learning

if and only if

− 1

α
(1 − Λ) (1 + ακ + αηφx − ηΛ) < κ (φπ − 1) + φx (1 − η) < 0. (44)

The derivation is shown in Appendix D. The positive feedback of ex-

pectations (29) always holds under the sign restrictions of the structural

parameters. Figure 4 describes the stability condition (44).

The stability condition under the current-looking rule has almost the

same features as the ones under the forward-looking rule. The difference

is that if the degree of imperfection is very high, the violation of the

Taylor principle is always the necessary and sufficient for stable sunspot

equilibria.
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6.3 Semi-forward-looking rule

The NK model (33)–(34) with the semi-forward-looking rule (37) is rep-

resented in the following multivariate form:[
xt

πt

]
= BsfEt

[
xt+1

πt+1

]
− α

[
1 + αφx 0

−κ 1

]−1 [
1
κ

]
wt,

where

Bsf ≡
[

1 + αφx 0
−κ 1

]−1 [
1 −α (φπ − 1)
0 η

]
.

Stability conditions are obtained as follows:

Proposition 7 Consider the NK model (33)–(34) and the semi-forward-

looking rule (37) with the positive feedback restriction (29) and the ob-

servable steady state. Stationary sunspot equilibria of CF representation

exist and are locally stable under adaptive learning if and only if

−(1 − Λ) (1 + αφx − ηΛ)

αΛ
< κ (φπ − 1) + φx (1 − η) < 0. (45)

The derivation of the proposition is shown in Appendix E.

The qualitative features of the stability condition (45) is exactly the

same as the ones under the current-looking rule (44). If the stability

condition (45) is described in a figure, it is similar to Figure 4.

6.4 Calibrations

Finally, let us clarify the significance of information imperfection in cal-

ibrated NK models. We calibrate stability conditions under the three

types of policy rules (35)–(37).

The model is analyzed using four cases of the structural parameters

(α, κ, η) in Table 1.29 The number of monetary policy shocks {wit}n
i=1 are

29The structural and policy parameters are given by Table 1 of Woodford (1999),
the ”Pre-Volcker (Prior I)” in Table 3 of Lubik and Schorfheide (2004), Section 1.5 of
McCallum and Nelson (1999), and the baseline result in Table II of Clarida, Gali, and
Gertler (2000). The Lubik and Schorfheide (2004)’s parameters are estimated using
a Bayesian technique, and the other parameters are used in Evans and McGough
(2005b).
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Table 1: Structural & policy parameters

Structural Policy
α κ η Type φπ φx

Woodford (1999) 1/0.157 0.024 0.99 c − −
Lubik and Schorfheide (2004) 1/1.45 0.77 0.99 c 0.77 0.17
McCallum and Nelson (1999) 0.164 0.3 0.99 f 0.87 0.17

Clarida, Gali, and Gertler (2000) 4 0.075 0.99 sf 0.83 0.27

set as n = 10.30 For simplicity, we set the same stochastic characteristics

of the shocks (ϕi = ϕ ∈ [0, 1) for all i and ρij = ρ ∈ [0, 1) for all

i ̸= j). The autocorrelation ϕ is set as ϕ = 0.9.31 Under these settings,

we will treat the parameter 1 − ρ as not only the degree of information

heterogeneity, but also the degree of information imperfection.

Table 2 shows calibrated eigenvalues of coefficient matrices (Bc, Bf ,

Bsf ) using the parameters in Table 1. In Woodford (1999), policy pa-

rameters were not estimated, and the policy parameters of Lubik and

Schorfheide (2004) are used. We find that all of the cases satisfy the pos-

itive feedback restriction (29) and the real and stationary conditions in

Lemma 3 so that their calibrated models allow stationary sunspot equi-

libria of CF representation to exist.

Figure 5 calibrates the stability conditions under the current-looking

rule and the degree of information heterogeneity 1 − ρ. The parameters

of Woodford (1999) and Lubik and Schorfheide (2004) are used. Panel

B shows the estimates of (φπ, φx) as well. The figure illustrates the an-

alytical results in previous sections. Under the observable steady state,

there emerges the stable regions that violate the Taylor principle, while

there is also the implausible regions where sunspot equilibria are unstable

30This number refers to the numbers of the members of the US Federal Open Market
Committee (12 members), the ECB Executive Board (6), and the BOJ Policy Board
(9).

31The serial correlation of a monetary policy shock is estimated to be 0.92 by Rude-
busch (2002) using US data during 1987-1999. Similar results are obtained by Consolo
and Favero (2009) using the data of the pre-Volcker period. Carrillo, Feve, and Math-
eron (2007) estimate the serial correlation to be 0.87 ∼ 0.95 using US data during
1960-2002. Feve, Matheron, and Poilly (2007) obtain similar results using European
data during 1987-2004.
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Table 2: Eigenvalues

Eigenvalues
Woodford (1999) Bc 1.0198 0.4412

Lubik and Schorfheide (2004) Bc 1.1767 0.5513
McCallum and Nelson (1999) Bf 1.0640 0.9045

Clarida, Gali, and Gertler (2000) Bsf 1.0357 0.4595

if (φπ, φx) are extremely small. Further, sunspot equilibria in the Lubik

and Schorfheide (2004)’s model are unstable under perfect information

(1 − ρ = 0).

The implausibility is resolved under imperfect information. The stable

regions are significantly expanded downwards as the degree of information

heterogeneity 1 − ρ is increased. In the literature, the correlations ρ of

the monetary policy shocks are not estimated so large as ρ > 0.5.32 If

1 − ρ ≥ 0.5, the lower bounds of stability conditions reach the origin

so that the violation of the Taylor principle (38) is the necessary and

sufficient condition. This suggests that the information imperfection in

agents’ information sets is an important factor for calibrated NK models

to exhibit empirically plausible self-fulfilling fluctuations.

Figure 6 shows the stability conditions under the forward-looking rule

using the parameters of McCallum and Nelson (1999). The results are

similar to the previous ones because Eq. (43) is not so restrictive as φx ≤
6.1. In practice, under a high degree of information heterogeneity, the

violation of the Taylor principle is the sufficient and necessary condition.

Figure 8 shows the stability conditions under the semi-forward-looking

rule. Results are the same as the previous ones.

In total, our results suggests that calibrated NK models needs the

information imperfection to obtain empirically plausible sunspot equilib-

ria. Those models provides implausible stability conditions under perfect

information, and such a implausibility is resolved by imperfect informa-

tion. In addition, the Taylor principle is important to prevent stationary

32Bhattacharjee and Holly (2015, Fig. 1) estimate the interactions of MPC members
of the Bank of England. The average of the estimated coefficients of the regressions
between policy decisions of the members is 0.32, which may be close to correlations of
their preferences.
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Figure 5: Stability conditions under different digrees of information het-
erogeneity (current-looking rule)
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Figure 6: Stability conditions under the forward-looking rule (Parameters:
McCallum and Nelson, 1999).
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Figure 7: Stability conditions under the semi-forward-looking rule (Pa-
rameters: Clarida, Gali, and Gertler, 2000).
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sunspot equilibria. This result is independent of the observability of the

steady state, the information imperfection, and the type of a policy rule.

7 Conclusions

This paper has investigated whether stationary sunspot equilibria are sta-

ble under adaptive learning when agents’ information sets of exogenous

variables are imperfect. Sunspot-driven business cycle models are pop-

ular to account for non-fundamental macroeconomic fluctuations, while

sunspot equilibria are unstable in calibrated business cycle models. The

RE literature demonstrates that self-fulfilling fluctuations are driven by

the existence of private information of fundamental shocks, while such a

relationship has been little analyzed in the framework of adaptive learn-

ing. Our paper incorporates such imperfect information into a reduced-

form expectational model with the positive feedback of expectations. Im-

perfect information make agents’ forecasting models limited and/or het-

erogeneous. The paper examines how imperfect information affects the

stability of sunspot equilibria under adaptive learning.

We find that when the steady state is observable, stability conditions

of sunspot equilibria are unchanged or relaxed by imperfect information.

Specifically, as the degrees of limitation and heterogeneity in agents’ infor-

mation sets increase, stability conditions are relaxed. As a result, sunspot

equilibria can be stable in standard business cycle models. In a basic New

Keynesian model with the observable steady state if agent’s information

sets are highly imperfect, the violation of the Taylor principle the suffi-

cient and necessary condition for stable sunspot equilibria.

Future works are expected to further clarify the effect of imperfect

information on the stability of sunspot equilibria. First, we should ana-

lyze models where lagged endogenous variables are included. All of the

models in this paper are purely forward-looking to obtain analytical re-

sults, but most business cycle models are not only forward-looking, but

also backward-looking. Next, our results will be applied to clarifying the

mechanism of past macroeconomic fluctuations that were driven by im-

perfect information. Our results suggest that the imperfection of agents’

information sets help the economy stay in self-fulfilling fluctuations. We

36



might be able to find why there happened self-fulfilling fluctuations af-

ter innovations of new technology which is familiar for specialists and

unfamiliar for the public. Finally, our results also suggest that as the

information sets of learning agents reach the perfect (or imperfect) ones,

the economy tends to deviate from (converge to) self-fulfilling fluctua-

tions. Thus, our analysis might be able to account for the boom and bust

of those fluctuations.

8 Appendix

A Regularity Assumptions

Assumption 2

1. det (Im − B) ̸= 0 and det (Imn − Φ ⊗ B) ̸= 0.

2. Φ is a diagonal and nonnegative matrix whose diagonal elements exist in
the interval [0, 1).

3. Γ is a nonnegative matrix, in which 0 ≤ ρij ≤ 1 for each i, j ∈ {1, ..., n}.

Assumption 2.1 avoids the possibility that a nonexplosive fundamental REE
could be indeterminate (see Honkapohja and Mitra, 2006, Proposition 1).

The diagonal representation of Φ in Assumption 2.2 simplifies the analysis
by equating the eigenvalues of Φ with its diagonal elements existing in the
interval [0, 1). Note that this assumption is not crucial for our analysis, because
even if Φ were originally nondiagonal, Eq. (1) could be transformed to an
equation that includes a diagonal autocorrelation matrix by premultiplying
Eq. (1) by the n × n matrix formed from the eigenvectors of Φ. The diagonal
elements in the interval [0, 1) ensure the stationarity of wt.

Neither is Assumption 2.3 crucial for our analysis, because any linear model
can be transformed to the system with Γ ≥ 0. For example, if any ρij is negative
in an original model, this negative correlation can be transformed to be positive
by changing the sign of wi (or wj) and redefining the correlation between −wi

and wj as ρij ≥ 0. Applying this transformation to all negative correlations,
the original model is transformed to the system with Γ ≥ 0.
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B Derivation of ODE under HM learning

The ODE under HM learning is obtained by accommodating the global con-
vergence of the ODE associated with an RPE in Evans and Honkapohja (2001,
Section 13.1.1). Agent i for each i ∈ {1, . . . , n} forms E∗

ityt+1 by using real-time
learning with the PLM (16) and the information set {ys, wis, ds}t

s=1. We as-
sume the t-dating of expectations considered by Evans and Honkapohja (2001,
chapter 10): coefficient parameters φit at time t are estimated with past data
up to time t − 1, {ys, wis, ds}t−1

s=1, and E∗
ityt+1 is formed with φit and the

contemporaneous data {yt, wit, dt}. The estimates of the coefficient param-
eters φ′

it = (ait, cit, dit) are given by the least-squares projection of yt−1 on
z′i,t−1 =

(
1, wi,t−1, ξt−1

)
: Ezi,t−1

(
yt−1 − φ′

itzi,t−1

)′ = 0. Then, the updating
rule of φit is shown by the RLS representation:

φit = φi,t−1 + t−1R−1
it zi,t−1

(
yt−1 − φ′

i,t−1zi,t−1

)′
, (B.1)

Rit = Ri,t−1 + t−1
(
zi,t−1z

′
i,t−1 − Ri,t−1

)
, (B.2)

where Rit = t−1
∑t

s=1 zi,s−1z
′
i,s−1, which is the updating of the matrix of the

second moment of zit.
The stochastic recursive algorithm (SRA) for φit for each i is obtained by

substituting the ALM (19) into Eq. (B.1):

φit = φi,t−1+t−1R−1
it zi,t−1

((
1 w′

t−1 ξt−1

) (
Sa,t−1 Sc,t−1 dt−1

)′ − z′i,t−1φi,t−1

)
,

where we denote Sat ≡ βat, at ≡ 1
n

∑n
i=1 ait as the average of the constant

term vectors for all types, Sct ≡ βctΦ + γ, ct ≡ 1
n (c1t, ..., cnt), dt ≡ 1

n

∑n
i=1 dit.

To obtain the ODEs for φi associated with the SRA, we have to calculate
the unconditional expectations of the updating terms in the SRA. The conver-
gence of the SRA is analyzed by Marcet and Sargent (1989b) in the stochastic
approximation approach, which is also introduced by Evans and Honkapo-
hja (2001, chapter 6). Denote the operator E as the expectation of variables
for φi fixed, taken over the invariant distributions of wt. Then, by letting
Eziz

′
j = limt→∞ Ezitz

′
jt for each i, j ∈ {1, ..., n}, the unconditional expectation

of the updating term in Eq. (B.1) is transformed to

E
[
R−1

it zi,t−1

((
1 w′

t−1 ξt−1

) (
Sa,t−1 Sc,t−1 dt−1

)′ − z′i,t−1φi,t−1

)]
= R−1

i

(
Eziz

′
i

)  Sa

0
d

 +
(
Eziz

′
i

)−1

 0 · · · 0
ωi1 · · · ωin

0 · · · 0

S′
c − φi,t−1

 ,

where Sa = βa, a ≡ 1
n

∑n
i=1 ai, Sc ≡ βcΦ + γ, c ≡ 1

n (c1, ..., cn), d ≡ 1
n

∑n
i=1 di,

and Eziz
′
i =

 1 0 0
0 ωii 0
0 0 ζ

 as E (wtξt) = 0 is assumed. Next, the expectation
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of the updating term in Eq. (B.2) is given by Eziz
′
i − Ri. Hence, the ODEs

for φi and Ri associated with the SRA are obtained as

dφi

dτ
= R−1

i

(
Eziz

′
i

) (
T (φi)

′ − φ′
i

)′
, (B.3)

dRi

dτ
= Eziz

′
i − Ri, (B.4)

where
T (φi)

′ ≡ (
Sa ω−1

ii

(
ωi1 · · · ωin

)
S′

c d
)
.

A scalar ωij denotes the covariance of wi and wj ; ωij ≡ σiiρijσjj for each
i, j. Furthermore, because Ri and Eziz

′
i in Eq. (B.4) are asymptotically equal,

R−1
i (Eziz

′
i) in Eq. (B.3) globally converges to unity. Hence, the stability of

the ODE for φ′
i = (ai, ci, di) in Eq. (B.3) is determined by smaller differential

equations:
dφi

dτ
= T (φi) − φi. (B.5)

In the same manner, smaller ODEs for the parameters
{
φj

}n

j ̸=i
are obtained.

The ODEs (B.5) for all i are represented by the ODEs for the aggregate
parameters (a, c, d) in Eq. (20) as follows. First, the ODEs for all ais have the
same form, and a is an arithmetic average of all ais. Then, the convergence
property of a is equivalent to that of ai for each i; the ODEs for all ais are
represented by a single ODE for a that has the same form as that for ai:

da

dτ
= Ta (a) − a,

where Ta (a) ≡ Sa. In the same manner, the ODEs for all dis are represented
by a single ODE for a that has the same form as that for di:

dd

dτ
= Td (d) − d,

where Td (d) ≡ d. Finally, the ODEs for all cis are represented by a single
ODE for the aggregate parameter c. If the ODEs of ci in Eq.(B.5) for all i are
multiplied by 1

n and combined in a single 1 × n matrix, the single ODE for c
is obtained by:

dc

dτ
= Tc (c) − c,

where

Tc (c) ≡ (
1
nω−1

11

(
ω11 · · · ω1n

)
S′

c · · · 1
nω−1

nn

(
ωn1 · · · ωnn

)
S′

c

)′
= (βcΦ + γ)

(
1
n

Ψ
)

,
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and

Ψ ≡


1 ω12ω

−1
22 · · · ω1nω−1

nn

ω21ω
−1
11 1 · · · ω2nω−1

nn
...

...
. . .

...
ωn1ω

−1
11 ωn2ω

−1
22 · · · 1


= diag (σii)1≤i≤n · Γ · diag (σii)

−1
1≤i≤n .

The derivation is complete.

C Derivation of Proposition 5

Consider the New Keynesian model (33)–(34) and the forward-looking rule
(36), and let us obtain the parameter region for matrix Bf to satisfy the positive
feedback restriction (29), the real and stationary conditions in Lemma 3, and
the stability condition (32).

For Bf to satisfy the positive feedback restriction (29), tr (−Bf ) < 0 and
det (−Bf ) > 0 must hold:

κ (φπ − 1) + φx (1 − η) < α−1 (1 + η (1 − αφx)) ,

φx < α−1.

Next, the stationary condition in Lemma 3 is satisfied if and only if

0 ≤ φx <
1 + η

αη
,

κ (φπ − 1) + φx (1 − η) < 0,

or

0 ≤ φx <
1 + η

αη
,

κ (φπ − 1) + φx (1 − η) >
2
α

(1 + η (1 − αφx)) ,

or
φx ≥ 1 + η

αη
.

They are derived from the sufficient and necessary condition of determinate
sunspot REEs in Bullard and Mitra (2002, Proposition 4).

Thus, the positive feedback restriction and the stationary condition are
summarized as

κ (φπ − 1) + φx (1 − η) < 0, (C.1)

φx < α−1. (C.2)
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Note that under Eq. (C.1), the real condition is always satisfied as the eigen-
values of Bf are

1
2

(1 + η − ακ (φπ − 1) − αφx)

±1
2

√
(1 − η + ακ (φπ − 1) + αφx)2 − 4α (κ (φπ − 1) + φx (1 − η)).

Finally, the stability condition (32) is λ [Bf ] < Λ−1: tr
(
Bf − Λ−1I2

)
< 0

and det
(
Bf − Λ−1I2

)
> 0. Both conditions provide

κ (φπ − 1) + φx (1 − η) > − (1 − Λ)
1 − η (1 − αφx) Λ

αΛ
, (C.3)

κ (φπ − 1) + φx (1 − η) > −1 − η (1 − αφx) Λ
αΛ

− 1 − Λ
αΛ

. (C.4)

Eq. (C.4) is redundant by Eq. (C.3) and Λ < 1.
Combining Eqs. (C.1)–(C.3), the stability conditions of stationary sunspot

equilibria of CF representation are given by Eq. (42)–(43). Note that the
stability conditions in the univariate version (Proposition 4) correspond to Eq.
(42) and φx = α−1, and Eq. (43) is obtained.

D Derivation of Proposition 6

Consider the New Keynesian model (33)–(34) and the current-looking rule (35),
and let us obtain the parameter region for matrix Bc to satisfy the positive
feedback restriction (29), the real and stationary conditions in Lemma 3, and
the stability condition (32).

First, the positive feedback restriction (29) provides

tr (−Bc) = −η + ακ + αηφx + 1
αφx + ακφπ + 1

< 0,

det (−Bc) =
η

αφx + ακφπ + 1
> 0,

both of which are always satisfied under the sign restrictions of structural
parameters in the NK model.

Next, the stationary condition in Lemma 3 is satisfied if and only if

κ (φπ − 1) + φx (1 − η) < 0, (D.1)

which is derived from the sufficient and necessary condition of determinate
sunspot REEs in Bullard and Mitra (2002, Proposition 1). Under Eq. (D.1),
the real condition is always satisfied as the eigenvalues of Bc are

1
2 (αφx + ακφπ + 1)

×
(

(ακ + αηφx + 1 + η) ±
√

(ακ + αηφx + 1 − η)2 − 4αη (κ (φπ − 1) + φx (1 − η))
)

.
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Finally, the stability condition (32) is λ [Bc] < Λ−1: tr
(
Bc − Λ−1I2

)
< 0

and det
(
Bc − Λ−1I2

)
> 0. Both conditions provide

κ (φπ − 1) + φx (1 − η) > − 1
α

(1 − Λ) (1 − ηΛ + ακ + αηφx) (D.2)

− Λ
2α

(1 − ηΛ + ακ + αηφx + η (1 − Λ)) ,

κ (φπ − 1) + φx (1 − η) > − 1
α

(1 − Λ) (1 − ηΛ + ακ + αηφx) . (D.3)

Eq. (D.2) is redundant by Eq. (D.3) and Λ < 1.
Combining Eqs. (D.1) and (D.3), the stability condition of stationary

sunspot equilibria of CF representation is given by Eq. (44).

E Derivation of Proposition 7

Consider the New Keynesian model (33)–(34) and the semi-forward-looking
rule (37), and let us obtain the parameter region for matrix Bsf to satisfy the
positive feedback restriction (29), the real and stationary conditions in Lemma
3, and the stability condition (32).

For Bsf to satisfy the positive feedback restriction (29), tr (−Bsf ) < 0 and
det (−Bsf ) > 0 must hold:

κ (φπ − 1) + φx (1 − η) < α−1 (1 + η + αφx) (E.1)

For Bsf to satisfy the stationary condition in Lemma 3,

κ (φπ − 1) + φx (1 − η) < 0 or κ (φπ − 1) + φx (1 − η) > 2α−1 (1 + η + αφx) .
(E.2)

The derivation of the condition is shown in Appendix F.
Eqs. (E.1)–(E.2) are combined into

κ (φπ − 1) + φx (1 − η) < 0, (E.3)

under which the eigenvalues of matrix Bsf ,

1
2αφx + 2

((1 + η + αφx) − α (κ (φπ − 1) + φx (1 − η)))

± 1
2αφx + 2

√
((1 + η + αφx) − α (κ (φπ − 1) + φx (1 − η)))2 − 4η (1 + αφx),

is always real.
Finally, the stability condition (32) is λ [Bsf ] < Λ−1: tr

(
Bsf − Λ−1I2

)
< 0

and det
(
Bsf − Λ−1I2

)
> 0. Both conditions provide

κ (φπ − 1) + αφx (1 − η) > α−1

(
η −

(
2
Λ

− 1
)

(1 + αφx)
)

, (E.4)

κ (φπ − 1) + φx (1 − η) > −(1 − Λ) (1 − ηΛ + αφx)
αΛ

(E.5)
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Eq. (E.4) is redundant by Eq. (E.5) and Λ < 1.
Combining Eqs. (E.3) and (E.5), the stability conditions of stationary

sunspot equilibria of CF representation are given by Eq. (45).

F Stationary conditions under the semi-forward-

looking rule

The sufficient and necessary condition for the stationarity of the ALM (or
sunspot ξt) is that there exist at least one eigenvalue of Bsf that is outside the
unit circle. On the other hand, both eigenvalues of B−1

sf lie outside the unit
circle if and only if

detB−1
sf > 1,

detB−1
sf − trB−1

sf > −1,

detB−1
sf + tr B−1

sf > −1;

or

detB−1
sf − trB−1

sf < −1,

detB−1
sf + tr B−1

sf < −1.

These conditions are transformed as follows:

φx > −1 − η

α
,

κ (φπ − 1) + φx (1 − η) > 0,

κ (φπ − 1) + φx (1 − η) < 2α−1 (1 + η + αφx)

or

κ (φπ − 1) + φx (1 − η) < 0,

κ (φπ − 1) + φx (1 − η) > 2α−1 (1 + η + αφx) .

because the determinant and trace of the Jacobian B−1
sf are obtained as det

(
B−1

sf

)
=

1
η (αφx + 1) and tr

(
B−1

sf

)
= 1

η + 1
η (η + ακ − ακφπ + αηφx). Thus, the condi-

tion of both eigenvalues of B−1
f to lie outside the unit circle is

0 < κ (φπ − 1) + φx (1 − η) < 2α−1 (1 + η + αφx) .

That is, the sufficient and necessary condition for the stationarity is obtained
by

κ (φπ − 1) + φx (1 − η) < 0 or κ (φπ − 1) + φx (1 − η) > 2α−1 (1 + η + αφx) .
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