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Abstract

This paper shows that the Fed’s exit strategy works as optimal monetary pol-
icy in a liquidity trap. We use the conventional new Keynesian model including a
recent inflation persistence and confirm several similarities between optimal mone-
tary policy and the Fed’s monetary policy. The zero interest rate policy continues
even after inflation rates are sufficiently accelerated over the 2 percent target and
hit a peak. Under optimal monetary policy, the zero interest rate policy continues
until the second quarter of 2022 and the Fed terminates it one quarter earlier.
Eventually, inflation rates exceed the target rate for over three years until the lat-
est quarter. The policy rates continue to overshoot the long-run level to suppress
high inflation rates.

Furthermore, high inflation rates under optimal monetary policy can explain
about 70 percent of the inflation data for 2021 and 2022 years. However, these are
still lower than the inflation data. This is because optimal monetary policy raises
the policy rates faster than the Fed does. The remaining 30 percent of inflation
rates can be constrained by the Fed’s more aggressive monetary policy tightening
after the zero interest rate policy.
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1 Introduction

The theory of monetary policy has been developed since the 1990s based on a new

Keynesian model as represented by Clarida et al. (1999) and Woodford (2003). Woodford

(2003) finds history dependence as a general property of optimal monetary policy with

commitment in a purely forward-looking new Keynesian model. He shows that the

forward-looking economy and history dependence are two sides of a coin in optimal

monetary policy. Eggertsson and Woodford (2003b,a), Jung et al. (2001, 2005), and

Adam and Billi (2006) extend optimal monetary policy analysis with commitment to

an economy in a liquidity trap and show that a robust conclusion about a feature of

optimal monetary policy is history dependence. The consequence of optimal monetary

policy under commitment in a liquidity trap is predicted by these papers. However, such

predictions have not been evaluated in the past two decades. Now, we show the answer.

During the pandemic period, the FOMC lowered the target range for the federal

funds rate to 0 to 1/4 percent on March 15, 2020. At the same time, the FOMC has

declared a clear commitment to stimulate the economy and has kept its promise. The

Fed commits that “The Committee expects to maintain an accommodative stance of

monetary policy until labor market conditions have reached levels consistent with the

Committee’s assessments of maximum employment and inflation has risen to 2 percent

and is on track to moderately exceed 2 percent for some time (9/16/2020)” by the Federal

Open Market Committee statements. Furthermore, the Fed states “With inflation having

exceeded 2 percent for some time, the Committee expects it will be appropriate to

maintain this target range until labor market conditions have reached levels consistent

with the Committee’s assessments of maximum employment (12/15/2021).” In these

statements, the Fed declares to allow inflation exceeding the 2 percent target to stimulate

an economy and to escape from deflation. This inflation overshooting is consistent with

optimal monetary policy with commitment. In reality, the Fed terminated the zero

interest rate policy in March 2022 after inflation rates sufficiently exceeded the 2 percent

target. Inflation rates had hit the peak before the monetary policy tightening and then

are slowly declining.
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In this paper, we show optimal monetary policy in a liquidity trap using a hybrid new

Keynesian model including inflation persistence. First, we analytically derive optimal

monetary policy and investigate its features. The novel feature is that optimal monetary

policy changes with the degree of inflation persistence. A central bank should implement

both history dependent and forward-looking responses to inflation rates and the output

gap. Second, we show normative analyses and examine numerical simulations of when

to exit from the zero interest rate policy. The optimal timing of ending the zero interest

rate policy becomes relatively earlier as inflation persistence becomes larger. In the case

of a higher degree of inflation persistence and a larger shock, the zero interest rate policy

can be terminated even while the natural rate shock does not disappear and is below

zero, that is, monetary tightening is front-loaded. We also observe such a front-loaded

tightening against the peak inflation rate. The optimal exit policy from a liquidity trap

drastically changes depending on inflation persistence and the size of shocks, despite

previous studies stressing a history-dependent monetary policy.

Then, we apply our model to U.S. monetary policy and show that optimal commit-

ment monetary policy replicates U.S. monetary policy and economy during and after

the pandemic period. In particular, optimal commitment policy can explain about 70

percent of the inflation surge for 2021 and 2022 years. Even when we assume alternative

scenarios for the natural interest rates and weakened forward guidance, our conclusion

that optimal commitment policy well explains the inflation surge does not change. Our

simulation suggests that a slower interest rate hike after the zero interest rate policy

by the Fed induces recent excessive high inflation rates. The remaining 30 percent of

inflation rates can be constrained by the Fed’s more aggressive monetary tightening. It

implies that the exit strategy from a liquidity trap depends on how quickly monetary

policy tightens and when the zero interest rate policy ends.

Our paper is related to three strands of previous literature. First, our paper is related

to optimal monetary policy in the model with inflation persistence such as in Woodford

(2003) and Steinsson (2003). In particular, Woodford (2003) derives the Phillips curve

including inflation inertia by the indexation rule. Our paper differs from these two
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papers in that we consider the zero lower bound on nominal interest rates. Terminating

the zero interest rate policy depends on the extensive progress of inflation rates through

backward-looking adjustment by indexation.

Second, our paper is related to optimal monetary policy in a liquidity trap. Eg-

gertsson and Woodford (2003b,a) and Jung et al. (2001, 2005) show that the optimal

commitment policy is history dependent so that a central bank continues a zero interest

rate policy even after the natural rate turns positive.1 Adam and Billi (2006, 2007) and

Nakov (2008) solve the optimal commitment policy as well as the discretionary policy

under the zero lower bound on nominal interest rates with stochastic shocks. Werning

(2011) shows that the future consumption boom as well as the future high inflation play

important roles in mitigating a liquidity trap. Evans et al. (2015) show an exit strategy

from the zero interest rate policy under a suboptimal policy, i.e., optimal discretionary

policy, using a purely forward-looking model and a purely backward-looking model. As

an independent work for a deterministic shock, Michau (2019) shows optimal monetary

and fiscal policy in a liquidity trap for a hybrid new Keynesian model and concludes

that inflation persistence requires an early monetary tightening.2 All these papers are

the foundation for our paper and we evaluate real U.S. monetary policy after the last

pandemic.

Third, our paper is also related to former empirical papers. Empirical studies using

U.S. economic data show that the inflation rate is highly persistent and the Phillips curve

is both forward-looking and backward-looking. Fuhrer and Moore (1995) and Gaĺı and

Gertler (1999) show that a hybrid Phillips curve rather than a purely forward-looking

Phillips curve is suitable for monetary policy analyses. Christiano et al. (2005) and

1Eggertsson and Woodford (2006) and Eggertsson (2006, 2008, 2012) reveal roles of fiscal policy as

well as monetary policy in a liquidity trap.

2There are many other influential papers regarding optimal monetary policy in a liquidity trap. For

example, Jeanne and Svensson (2007) show the important role of currency depreciation and price level

targeting as a commitment device to escape from a liquidity trap. Billi (2011) focuses on the optimal

long-run inflation rate to preempt falling into a liquidity trap. Fujiwara et al. (2013) extend the model

to the open economy and show an optimal zero interest rate policy in a global liquidity trap.
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Smets and Wouters (2007) estimate the hybrid Phillips curve in a dynamic stochastic

general equilibrium model and it suits the U.S. economy. Benati (2008) estimates sticky-

price DSGE models with hybrid Phillips curves for several countries. For the U.S., on

the sample from 1947Q1 to 2005Q4, estimations show strong evidence of high structural

inflation persistence. For data after the Volkers stabilization of 1983Q1, however, an

estimated indexation becomes lower. Moreover, Cogley and Sbordone (2008) show that

the inflation rate is explained by purely forward-looking behavior for post-WWII data

after controlling a trend shift in an inflation rate. Carvalho et al. (2019) show a small

indexation parameter using data 1955Q1-2015Q4 for the U.S.3 For the last few years,

Kiley (2023) focuses on the evolution of the inflation persistence in a Phillips Curve using

the Bayesian approach. The paper shows that inflation persistence drastically increases

by post-2019 experience and is estimated at 0.86. It requires us to set a highly persistent

indexation parameter as one in our model. These findings suggest that the degree of

indexation has changed over time in the U.S.

The remainder of the paper proceeds as follows. Section 2 presents a model of the

economy with inflation persistence. Section 3 derives an optimal monetary policy in a

liquidity trap and Section 4 examines numerical simulations to show the optimal exit

strategy from a zero interest rate policy to the natural rate shocks. Section 5 shows

that a negative cost-push shock induces deflation under optimal commitment policy. We

evaluate recent U.S. monetary policy in Section 6. Section 7 concludes.

3Benati (2008) estimates an indexation parameter γ for hybrid new Keynesian Phillips curve in

Section 3 on the sample from 1947Q1 to 2005Q4 as 0.908 and for the sample after the Volkers stabilization

of 1983Q1 as 0.619. Carvalho et al. (2019) show γ = 0.128 using data 1955Q1-2015Q4 for the U.S.
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2 The Model

We use a new Keynesian model proposed by Woodford (2003). The macroeconomic

structure is expressed by the following three equations:

xt = Etxt+1 − χ (it − Etπt+1 − rnt ) , (1)

πt − γπt−1 = κxt + β (Etπt+1 − γπt) + µt, (2)

rnt = ρrr
n
t−1 + εrt , (3)

where χ, κ, β, γ, and ρr are parameters, satisfying χ > 0, κ > 0, 0 < β < 1, 0 ≤ γ ≤ 1,

and 0 ≤ ρr < 1. xt, it and πt denote the output gap, the nominal interest rate (or policy

rate), and the rate of inflation in period t, respectively. The expectations operator Et

covers information available in period t. rnt is the natural rate of interest, which is

assumed to follow an AR(1) process. εrt is i.i.d. disturbance with variances of σr. µt is

the cost-push shock that is i.i.d. disturbance with variances of σµ.

Equation (1) is the forward-looking IS curve. The IS curve states that the current

output gap is determined by the expected value of the output gap and the deviation of

the current real interest rate, defined as it − Etπt+1, from the natural rate of interest.

Equation (2) is the hybrid Phillips curve. γ denotes the degree of inflation persistence.

In particular, when γ = 0, the hybrid Phillips curve collapses to a purely forward-looking

Phillips curve, in which current inflation depends on expected inflation and the current

output gap. When 0 < γ ≤ 1, the Phillips curve is both forward-looking and backward-

looking and the current inflation rate depends on the lagged inflation rate as well as the

expected inflation and the current output gap. As γ approaches one, the coefficient on

the lagged inflation rate approaches 0.5.

In this paper, we assume inflation persistence with indexation. Specifically, we follow

Woodford (2003), which derives the Phillips curve including inflation inertia with a micro-

foundation.4 In the indexation rule, some firms that cannot reoptimize their own goods

4There are several theoretical foundations to introduce inflation persistence. For example, Mankiw

and Reis (2002) introduce information rigidity to produce inflation persistence. Milani (2007) points

out the importance of an agent’s learning for inflation persistence.
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prices adjust current prices based on the past inflation rate. The indexation mechanism

is empirically supported by Christiano et al. (2005) and Smets and Wouters (2007). We

can analyse both the purely forward-looking Phillips curve and the hybrid Phillips curve

by changing the parameters of inflation persistence.

Next, we consider the central bank’s intertemporal optimization problem. The central

bank sets the nominal interest rate it so as to minimize the approximated welfare loss

Lt defined as

Lt = Et

∞∑
i=0

βiLt+i, (4)

where Lt is the period loss function obtained by second-order approximation of the

household utility function. In an economy with inflation inertia, Woodford (2003) shows

that Lt is given by

Lt = (πt − γπt−1)2 + λxx
2
t , (5)

where λx is a non-negative parameter. A central bank needs to stabilize πt − γπt−1

in approximation rather than the inflation rate itself when inflation exhibits intrinsic

persistence. In an economy without inflation persistence, dispersion comes from an

environment where some firms reoptimize prices and other firms do not change prices at

all. In an economy with indexation on inflation rates, however, dispersion comes from

an environment where some firms not reoptimizing their prices follow the past inflation

rate with a certain degree γ and other firms reoptimize prices. Therefore, to minimize

price dispersion, a central bank needs to set the current inflation rate so as to be close to

the adjusted lagged inflation rate. This is eventually consistent with the Fed’s forward

guidance to allow inflation rates to flexibly exceed a target level of inflation rate. The

loss function induces a looser commitment to anchor inflation rates to a target level

than a loss function to minimize a deviation of the inflation rate itself from the target.

However, it should be noted that we show optimal monetary policy that maximizes the

household’s utility regardless of the approximation.

Finally, we impose a nonnegativity constraint on the nominal interest rate:

it ≥ 0. (6)
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It should be noted that the presence of a nonnegativity constraint introduces nonlinearity

in an otherwise linear-quadratic model. The central bank maximizes equation (4) subject

to equations (1)-(3) and (6).

3 Optimal Monetary Policy in a Liquidity Trap

We analytically characterize optimal monetary policy in a liquidity trap and clarify the

implication of an optimal exit strategy. Optimal monetary policy under the zero lower

bound on the nominal interest rate in a timeless perspective is expressed by the solution

of the optimization problem.5 To investigate features of optimal monetary policy, we

denote the degree of inflation persistence in the hybrid Phillips curve as γpc and that in

the period loss function as γloss. This setup is just to clarify the mechanism of inflation

persistence and we set γpc = γloss = γ in the benchmark. The optimization problem is

represented by the following Lagrangian form:

L = Et

∞∑
i=0

βi


(πt+i − γlossπt+i−1)2 + λxx

2
t+i

−2φ1t+i

[
xt+i+1 − χ

(
it+i − πt+i+1 − rnt+i

)
− xt+i

]
−2φ2t+i [κxt+i + β (πt+i+1 − γpcπt+i)− πt+i + γpcπt+i−1]

 ,

where φ1 and φ2 are the Lagrange multipliers associated with the IS constraint and the

Phillips curve constraint, respectively. We differentiate the Lagrangian with respect to

πt, xt, and it under the nonnegativity constraint on nominal interest rates to obtain the

first-order conditions:

−βγloss (Etπt+1 − γlossπt)+πt−γlossπt−1−β−1χφ1t−1−βγpcEtφ2t+1+(βγpc + 1)φ2t−φ2t−1 = 0,

(7)

5The central bank solves an intertemporal optimization problem in period t, considering the expecta-

tion channel of monetary policy, and commits itself to the computed optimal path. This is the optimal

solution from a timeless perspective defined by Woodford (2003).
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λxxt + φ1t − β−1φ1t−1 − κφ2t = 0, (8)

itφ1t = 0, (9)

φ1t ≥ 0, (10)

it ≥ 0. (11)

Equations (9), (10), and (11) are conditions for the nonnegativity constraint on nom-

inal interest rates. The above five conditions, together with the IS curve of equation

(1) and the hybrid Phillips curve of equation (2), govern the loss minimization. The

optimal interest rate is determined by these conditions each period. We also need initial

conditions for all variables being zero except the nominal interest rate, which takes a

positive value in the steady state. When the nonnegativity constraint is not binding,

i.e., it > 0, the Lagrange multiplier φ1t becomes zero by the Kuhn-Tucker condition in

equation (9), and the interest rate is determined by the conditions given by equations

(1), (2), (7), and (8) with φ1t = 0. When the nonnegativity constraint is binding, i.e.,

it = 0, the interest rate is simply set to zero. The interest rate remains zero at least

until the Lagrange multiplier φ1t becomes zero.

We cannot solve this system using the standard solution method because of the non-

negativity constraint on nominal interest rates, and numerical simulations are required

to obtain the path of variables under optimal monetary policy in a liquidity trap. The

first-order conditions in period t given by equations (7) and (8), however, characterize

qualitative features of optimal monetary policy in a liquidity trap and the economy with

inflation persistence.

The first feature is that, due to the central bank’s objective to minimize the change

in inflation rates, i.e., πt − γπt−1, the optimality condition includes terms to smooth

inflation rates as shown in equation (7). Specifically, the expected change in inflation
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rates as well as the current change in inflation rates induce a strong commitment to

inflation smoothing. In an economy with inflation persistence, less weight is imposed on

the deviation of inflation rates from a target level than in an economy without inflation

persistence.6 Thus, agents expect more accommodative stance of the central bank against

inflation and a high inflation rate accelerates along with a high expected inflation rate.

The second feature of optimal monetary policy is forward-looking terms associated

with introducing inflation persistence into the model. The central bank implements mon-

etary policy based on a forecast of future inflation rates and the output gap. There are

two channels to make optimal monetary policy forward-looking. The first channel func-

tions through the parameter γloss on the future inflation rate in equation (7). Optimal

monetary policy in a model with inflation persistence should respond to the expected in-

flation rate. The second channel works through the parameter γpc in equation (7) on the

Lagrange multiplier φ2t+1 that is related to the future output gap and a future zero in-

terest rate condition. Note that the optimality condition includes the backward-looking

variables, which induces history dependent policy as in the standard new Keynesian

model. Theoretically, both forward-looking and backward-looking elements contribute

to determining the optimal path of the nominal interest rates, including the optimal

timing of exit from the zero interest rate.

When comparing the optimal targeting rule with that in the previous literature, the

features of optimal monetary policy become evident.7

6We also see a feature of an accommodative stance of a central bank against inflation in the central

bank’s loss function. Assuming that the inflation rate in equilibrium is expressed in the form of AR(1)

process with a persistence of ρπ, equation (5) can be reduced to

Lt = (ρπ − γ)
2
π2
t−1 + λxx

2
t .

For reasonable parameters, (ρπ − γ)
2

is less than one and a central bank stabilizes an economy by

imposing less weight on inflation rates.

7We can derive an optimal price-level targeting rule that exactly achieves the same optimal com-

mitment solution as the inflation targeting rule. Defining a price-level p̃t and a price-level target p∗t

as

p̃t ≡ pt − γpt−1 +
λx
κ
xt,
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βγpcEtφ1t+1 − (1 + γpc + βγpc)φ1t +
(
1 + β−1 + γpc + β−1κχ

)
φ1t−1 − β−1φ1t−2

= −κβγloss (Etπt+1 − γlossπt) + κ (πt − γlossπt−1)− βλxγpcEt4xt+1 + λx4xt. (12)

This optimal targeting rule includes the zero interest rate condition given by φ1. The

optimal targeting rule is forward-looking due to inflation persistence as well as backward-

looking. The change in inflation rates is directly related to optimal monetary policy. The

rule reveals that the coefficient on πt− γlossπt−1 is positive, i.e., there is a negative effect

on φ1t, and the zero interest rate policy should be terminated when the inflation rate

sufficiently accelerates. It, however, notes that the coefficient on Etπt+1 − γlossπt is

negative, i.e., there is a positive effect on φ1t. An acceleration of the inflation rate in the

future works to keep a zero interest rate policy since a central bank has the incentive to

smooth inflation rates. As a result, an acceleration of the expected inflation rate induces

an acceleration of the current inflation rate, which contributes to strengthening the effect

of the commitment policy and increases inflation rates.8 Therefore, the zero interest rate

policy is terminated earlier.

If the nominal interest rate does not hit the zero lower bound, φ1 becomes zero and the

optimal targeting rule (12) can be reduced to backward-looking as shown in Woodford

φ1t ≡ κ (p∗t − p̃t) ,

we have the following optimal price-level targeting rule.

p∗t ≡
γβ

1 + γβ
Etp
∗
t+1 +

1

1 + γβ
p∗t−1 −

γ

1 + γβ
Qt +

1

1 + γβ

(
γ + β−1 − κχ

β

)
Qt−1 −

β−1

1 + γβ
Qt−2,

where Qt ≡ (p∗t − p̃t) for simplicity. The prominent feature of the rule is Etp
∗
t+1. The price-level target

should depend on the future target level of price associated with future economic conditions. When γ

is zero, this rule is reduced to the one in Eggertsson and Woodford (2003b,a).

8We make this point clearer in terms of the level of the inflation rate in Appendix A.
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(2003).9

κ (πt − γlossπt−1) + λx4xt = 0.

Unlike equation (12), the rule is not hybrid, implying that forward-looking terms drop

from the targeting rule. The forward guidance of smoothing inflation rates weakens since

there is only one term for the change in inflation rates in the case where the nominal

interest rate does not hit the zero lower bound. It is a phenomenon of a liquidity trap

that strengthens the forward guidance with inflation persistence.

When γ is zero, this rule collapses to the standard optimal targeting rule in the

forward-looking new Keynesian model as follows:

κπt + λx4xt = 0.

4 Natural Rate Shocks

4.1 Basic Calibration

In this section, we numerically solve the model and characterize the optimal exit strat-

egy from the zero interest rate policy. The baseline quarterly parameters are typical

for the U.S. economy as in Table 1. We set χ = 6.25, α = 0.66, and κ = 0.003 in

structural equations from Woodford (2003). Based on these structural parameters, we

calculate λx = 0.003. The natural rate shock is stochastic with variance σr = 0.2445

and persistence ρr = 0.8, as in Adam and Billi (2006). The steady state real interest

rate is set to be 3.5 percent annually and β = 0.9913. The model is solved numerically

by the collocation method and the technical methodology to implement simulations is

described in Appendix B.

Figure 1 shows optimal responses of the interest rate to natural rate shocks for differ-

9Another form is given by

κ (Etπt+1 − γlossπt) + λxEt4xt+1 = 0.
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ent inflation inertia.10 A central bank starts the zero interest rate policy even when the

natural rate shock is still positive. This is an effect of uncertainty of shocks as pointed

out in Adam and Billi (2006). Even in the presence of inflation inertia, the uncertainty

of the natural rate shock requires a central bank to conduct preemptive monetary easing.

The additional contribution of introducing inflation persistence is that the zero interest

rate policy is terminated earlier, as inflation persistence becomes larger in response to

the natural rate shocks.

4.2 Optimal Exit Policy

4.2.1 One-time Shock

We assume a simple situation where a one-time shock with a persistence of ρr = 0.8 occurs

in period 0. In particular, we give a 2 percent negative natural rate shock (equivalent to

8 percent annually) to make the economy into a liquidity trap.11 We also give a larger

shock, i.e., an annual 12 percent negative natural rate shock with a persistence of 0.8.

Figure 2 shows the timing of an optimal exit from a zero interest rate in response to

an annual 2 percent negative natural rate shock for different degrees of inflation inertia.

Interest rates are annualized in the figure. We observe several quantitative characteristics

in the impulse responses.

As a common feature, a central bank sets the nominal interest rate at zero for the first

several periods to bring overshooting of inflation rates and reduce real interest rates to

stimulate the economy in any case. Afterwards, the central bank increases the nominal

interest rate and the inflation rate returns to zero. This outcome is consistent with

Eggertsson and Woodford (2003b,a) and Jung et al. (2001, 2005) that show that the

zero interest rate policy continues even after the natural rate turns positive in the case

of the purely forward-looking economy, i.e., γ = 0.

10Note that Figure 1 does not show the whole feature of optimal monetary policy in the sense that

other state variables are set at zero.

11For example, Jung et al. (2001, 2005) assume at least a 2 percent one-time negative shock to make

the economy into a liquidity trap.
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The distinct feature of optimal monetary policy is early tightening with inflation in-

ertia increasing. As shown in Figure 2, when we assume γ = 0.8, the timing to terminate

the zero interest rate policy is earlier compared to the case without inflation persistence.

In an economy with inflation persistence, even in response to a negative shock, the in-

flation rate registers a positive number for the initial period and accelerates afterward.12

Qualitatively, two reasons are worth being mentioned. First, inflation persistence itself

accelerates inflation rates in an intrinsic way as the degree of inflation inertia increases.

A high inflation rate in the past contributes to increasing inflation rates in the future.

These reasons contribute to an early termination of the zero interest rate policy. Second,

the outcome results from the power of forward guidance by the commitment policy. In

particular, a central bank should stabilize πt − γπt−1 in approximation rather than the

inflation rate itself in an economy with inflation persistence. Based on this behavior by

the central bank, private agents expect that current high inflation will induce a high

expected inflation rate in the future, which accelerates inflation rates. This is consistent

with the Fed’s forward guidance to allow inflation rates to flexibly exceed a target level

of inflation rate.

To quantitatively examine how these two elements affect the inflation dynamics and

the zero interest rate policy, we show a case of γloss = 0, given that other γ are set to

be 0.4 in Figure 3. In this case, the economy starts with initial deflation and inflation

rates remain low, unlike the case of all γ = 0.4. This result is similar to the one of

γ = 0 in Figure 2. It reveals that the commitment to stabilizing πt−γlossπt−1 accelerates

inflation rates. To identify which of the two terms of the change in inflation rates

in equation (12) strengthens the effect of the commitment policy, we set only γloss of

−κβγloss (Etπt+1 − γlossπt) in optimal monetary policy to be zero. Then, inflation rates

become subdued compared to the case of all γ = 0.4 but remain high compared to the

case of all γloss = 0. This implies that two terms quantitatively function as accelerators

of inflation rates. We also show a case of setting γpc only in the hybrid Phillips curve to

be zero in Figure 3. Even though the timing to end the zero interest rate policy does

12Initial inflation rates can be negative for small γ such as 0.1.
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not change, a central bank sets the policy rate lower compared to the case of γ = 0.4.

This is an effect of no inflation persistence in the Phillips curve.

Specifically, Figure 4(a) confirms that a zero interest rate policy is terminated earlier,

as the persistence of inflation becomes larger. Figure 4(a-1) shows the time lag between a

period when a zero interest rate policy is terminated, Tr, and a period when the natural

rate becomes positive, Trn, for different degrees of inflation inertia. It is shown that

an early tightening policy becomes stronger as inflation persistence becomes larger. In

response to an annual 8 percent negative shock, the timing of terminating a zero interest

rate policy is earlier by 2 quarters in the case of γ = 0.8 than that in the case of γ = 0. In

the case of γ = 0.8, a central bank starts to increase the interest rate in the timing when

the natural rate turns to be positive, i.e., Tr − Trn = 0. There is no history dependent

easing. Furthermore, the early tightening policy becomes more evident as the size of the

negative natural rate shocks becomes larger. When γ = 0.8 and there is an annual 12

percent negative shock, a central bank ends the zero interest rate policy even while the

natural rate remains negative since Tr−Trn = −1. This is called front-loaded tightening,

which is in stark contrast to history dependent easing. According to inflation persistence

and the sizes of shock, optimal exit policy from a liquidity trap drastically changes.

In Figure 4(a-2), we investigate the time lag between a period when a zero interest

rate policy is terminated and a period when the inflation rate hits its peak, Tp, since

the inflation rate is one of the key variables to decide the exit from a zero interest rate

policy. Figure 4(a-2) shows that Tr − Tp becomes smaller as inflation inertia becomes

larger. In response to an annual 8 percent negative shock, the timing of terminating a

zero interest rate policy is earlier by 3 quarters in the case of γ = 0.8 than that in the

case of γ = 0 in relation to the peak inflation rate. In the case of γ = 0.8, a central bank

terminates the zero interest rate policy immediately after the inflation rate hits its peak,

i.e., Tr−Tp = 1. This result is a new finding against Eggertsson and Woodford (2003b,a)

and Jung et al. (2001, 2005) that show that a zero interest rate policy continues for long

periods even after the inflation rate hits its peak. This tendency remains unchanged for

larger negative natural rate shocks.
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4.2.2 Sequential Shock

Eggertsson and Woodford (2003b,a) assume that annual 2 percent negative shocks con-

tinue to occur for several years with a certain probability of producing a prolonged liq-

uidity trap. In a similar vein, we assume a situation where negative natural rate shocks

continue for a certain period, which is a realistic assumption to replicate a liquidity trap.

Figure 4(b) shows a case where annual 2 percent negative shocks with a persistence

of 0.8 continue to occur for 10 quarters. The results are similar to those for a one-time

shock. Both panels 4(b-1) and 4(b-2) confirm that history dependence becomes weaker

as inflation inertia becomes larger. Inflation persistence induces a nontrivial implication

for the optimal exit from the zero interest rate. The timing to terminate a zero interest

rate policy is earlier by 4 quarters in the case of γ = 0.8 than that in the case of γ = 0

in relation to the natural rate of interest and the peak inflation rate. With a high

degree of inflation persistence, a central bank increases its policy rate even before the

natural rate returns to be positive, shown as Tr − Trn = −2. This shows the case where

optimal monetary policy implements the front-loaded tightening. Moreover, in the case

of γ = 0.8, the zero interest rate policy is terminated immediately after the inflation rate

hits its peak, i.e., Tr−Tp = 1. Even if we assume a different sequential shock, i.e., annual

4 percent negative shocks with persistence of 0.8 continue to occur for 4 quarters, we can

draw the same conclusion that early tightening becomes more pronounced as inflation

inertia becomes stronger.

For robustness, to examine a case with a shock for a longer period, Figure 5 shows

impulse responses to annually 5 percent negative natural rate shock for 10 periods with-

out persistence under optimal monetary policy. In this case, the timing of terminating a

zero interest rate policy is the same for all inflation persistence. It, however, notes that a

central bank implements less monetary easing since an interest rate increases faster after

a termination of the zero interest rate policy as inflation persistence becomes stronger.

For an inflation rate and the output gap, a less monetary easing induces larger expansion

as shown in other simulations under optimal monetary policy.13

13Even when we assume sequential cost-push shock, we can not make a long deflation under optimal
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Figure 6 changes the size and length of a negative shock. For various sizes and lengths

of shocks, we observe the same timing of terminating a zero interest rate policy for all

inflation persistence as shown in Figure 6(a).

5 Deflation and Cost-push Shocks

In the last section, we cannot observe deflation in simulations. During the last few

years, however, inflation rates were below the target of inflation rates and are sometimes

negative in many countries including the U.S. This prompts a question as to how the

economy behaves with deflation. To that end, we assume a negative cost-push shock in

the equation of the hybrid Phillips curve. Following Adam and Billi (2006), we assume a

cost-push shock with σµ = 0.154 and no persistence as well as a natural rate shock and

then obtain the optimal response functions.

Figure 7 shows the impulse responses to an annual 8 percent one-time negative natural

rate shock with a persistence of 0.8 and annual 2 percent negative cost-push shocks

continuing for 5 quarters. The combination of the two negative shocks produces deflation

for the first several periods. After deflationary periods, inflation rates rise. As inflation

shows more persistence, inflation rates overshoot higher. For high inflation persistence

such as γ = 0.8, the nominal interest rate quickly rises and overshoots above a steady

state level to control inflation rates after the zero interest rate policy.

Even in the case where the economy starts with deflation, however, an early tightening

policy is optimal. In particular, this characteristic becomes more pronounced in relation

to the inflation rate as shown in Figure 8(a) when inflation inertia becomes larger. With

the large degree of inflation persistence, the inflation rate hits its peak after a central

bank begins to raise the policy rate, i.e., Tr − Tp = −2 in the case of γ = 0.8. Moreover,

for an annual 12 percent one-time negative natural rate shock with a persistence of 0.8

and annual 2 percent negative cost-push shocks continuing for 5 quarters, Figure 8(a-1)

shows Tr − Trn = −1 in the case of γ = 0.8, which confirms front-loaded tightening in

monetary policy.
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the conduct of optimal policy.

6 Evaluation for U.S. Monetary Policy

6.1 Calibration for Recent U.S. Economy

For parameters, we simply borrow these from a representative paper for a liquidity trap

analysis, Eggertsson and Woodford (2003b) and Woodford (2003), and set χ = 0.5,

κ = 0.02, θ = 7.66, and λx = 0.0026 as shown in Table 2.

Evaluating inflation persistence and a long-run natural interest rate is hard in real-

time. These factors, however, are critical for the short- and medium-term monetary

policy analysis. When we observe persistent high inflation rates after the pandemic, we

naturally suppose high inflation persistence. Kiley (2023) focuses on the evolution of the

inflation persistence in a Phillips Curve using the Bayesian approach. The paper shows

that inflation persistence drastically increases by post-2019 experience and is estimated

as 0.86. It requires us to set a highly persistent indexation parameter in our model.

We set γ = 1 and it corresponds to about 0.5 for a coefficient on an inflation lag. Our

parameter setting is still conservative to describe inflation persistence.

We set a nominal interest rate as 4 percent annually in the steady state and a discount

factor is given by β = 0.99. This 4 percent is a sum of the 2 percent inflation target and 2

percent of an average natural rate of interest after 1990 following Laubach and Williams

(2003).14 In the model, we suppose that a long-run inflation rate is anchored at the 2

percent by the Fed.15 This is consistent with Eggertsson and Woodford (2003b) that

14The Fed estimation result is available at https://www.newyorkfed.org/research/policy/

rstar/.

15In particular, when we set γ = 1, the model and all conditions eventually do not change as shown in

Woodford (2004). We may replace πt by π̂t = πt−π̄, where π̄ is a target inflation rate, and all conditions

except the IS curve do not change since the inflation terms are described by the first difference of inflation

rates. For the IS curve, we can equivalently transform it as

xt = Etxt+1 − χ (it − Etπ̂t+1 − π̄ − rnt ) .
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assume an annual 4 percent nominal interest rate in the steady state due to β = 0.99.

We show alternative cases for the natural interest rate in the steady state in the next

section. Recently, the Fed estimates the natural rate of interest to decrease toward 1

percent.

In simulations, we interpret the second quarter of 2020 as the starting point since

the FOMC has lowered the target range for the federal funds rate to 0 to 1/4 percent

on March 15, 2020, and we observe large drops in gross domestic product and inflation

rates on a quarterly base in the second quarter of 2020. In the third quarter of 2020,

FOMC officially declared a commitment to allow inflation rates to exceed 2 percent

on September 16, 2020, in their official statement. We define that the Fed changes a

monetary policy regime and newly introduces optimal zero interest policy in the second

quarter of 2020.16

Regarding shocks in the simulation, the pandemic induces a very large size shock, but

a very short-term shock. We observe a large drop in the growth rate of gross domestic

product only in the second quarter of 2020. Thus, we give one-time negative natural rate

shock and one-time negative cost-push shock without shock persistence as Eggertsson

and Woodford (2003b) to match simulations to the data at the second quarter of 2020

for an inflation rate and the output gap as shown in Figure 9.17 The simulations are

deterministic and we use Dynare to run simulations.18

16We assume that the Lagrange multipliers φ1 and φ2 are zero before shocks, i.e., the second quarter

of 2020.

17We assume −25.4 percent of the natural rate shock and −1.48 percent of cost-push shock at a time

zero as a quarterly base. In simulations, we use the data in the first quarter of 2020 for the inflation rate

as 0.325 (a deviation from the 2 percent target, annually). We use the Real Gross Domestic Product,

Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate for the output gap. We

make trend series by one year moving average and calculate a gap from the trend series to real GDP.

For inflation rates, we use the Consumer Price Index for All Urban Consumers: All Items Less Food

and Energy in the U.S. City Average, Percent Change, Quarterly, Seasonally. For the Fed’s policy rate,

we use the Federal Funds Effective Rate, Percent, Quarterly, Not Seasonally Adjusted, Average.

18We extend a code by Johannes Pfeifer for optimal monetary policy in a liquid-
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6.2 Optimal Monetary Policy for the U.S.

Figure 9 shows inflation rates, the output gap, and policy rates under optimal monetary

policy and these U.S. data from the second quarter of 2020 to the first quarter of 2024.

We observe that the Fed’s monetary policy shares several common points with optimal

monetary policy. First, the zero interest rate policy continues even after inflation rates

sufficiently exceed the 2 percent target. Optimal monetary policy continues the zero

interest rate policy until the second quarter of 2022 and the Fed terminates it one quarter

ahead. Moreover, the zero interest rate policy is terminated after the peak of inflation

rates. An inflation rate hits a peak in the second quarter of 2021 and the first quarter

of 2022 in the data and the simulation, respectively. Second, inflation rates sufficiently

overshoot the target rate for over three years until the latest quarter, i.e., the first quarter

of 2024. A recent chronic high inflation is the natural outcome of optimal monetary policy

under a high inflation persistence. Third, the policy rates also overshoot the steady state

level to stop high inflation rates until the first quarter of 2024.

Furthermore, several points need to be mentioned. Inflation surge under optimal

monetary policy can explain about 70 percent of inflation data for 2021 and 2022 years.

The average inflation rates for 2021 and 2022 years are 5.4 percent and 3.9 percent in

the data and the simulation, respectively. However, inflation rates in the simulation are

still lower than the data. A reason for it can be a cost-push shock after the pandemic.

More importantly, another reason is that optimal monetary policy raises the policy rates

faster than the Fed does even though the Fed terminates a zero interest rate policy one

quarter earlier. This stronger and faster monetary policy tightening constrains inflation

rates under optimal monetary policy. The remaining 30 percent can be constrained by

the Fed’s more aggressive monetary policy tightening after terminating the zero interest

rate policy.

ity trap, JohannesPfeifer/DSGE_mod/blob/master/Gali_2015/Gali_2015_chapter_5_commitment_

ZLB.mod. Our code is available upon your request.
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6.3 Robust Analysis

High or Low Natural Interest Rate

We show how the nominal interest rate level in the steady state affects U.S. monetary

policy. In particular, we show a case in which the U.S. natural interest rate returns

to 3 percent as in the early 2000s or decreases to 1 percent following a recent decrease

as shown by the Fed.19 To set the nominal interest rates as 3 and 5 annually, we set

β = 0.9925 and β = 0.9876, respectively.

Figure 11 shows a simulation result in the case of the 3 percent natural interest rate.20

This result is similar to the case of the 2 percent natural interest rate. A difference from

the case of the 2 percent natural interest rate is a faster policy rate rise after the zero

interest rate policy. A reason for this is that the monetary easing becomes stronger for

the same zero interest rate policy as the nominal interest rate in the long run becomes

higher by a higher natural interest rate, as described in equation (1).

Figure 12 shows a simulation result in the case of the 1 percent natural interest rate.21

In this case, the zero interest rate policy is terminated one quarter later in comparison to

the case of the 2 percent natural interest rate. Thanks to the later termination, inflation

rates are slightly higher and the average inflation rate for 2021 and 2022 years is 4.1

percent in the simulation. When we compare this case and the Fed’s monetary policy,

the timings to terminate the zero interest rate policy differ by two quarters. However,

the monetary tightening, including the policy rate hike, seems to be the same amount

and the nominal interest rates and inflation rates converge to the almost same levels in

the first quarter of 2024.

19The Fed estimation result is available at https://www.newyorkfed.org/research/policy/

rstar/.

20We assume −26.3 percent of the natural rate shock and −1.46 percent of cost-push shock at a time

zero as a quarterly base.

21We assume −24.2 percent of the natural rate shock and −1.47 percent of cost-push shock at a time

zero as a quarterly base.

21

https://www.newyorkfed.org/research/policy/rstar/
https://www.newyorkfed.org/research/policy/rstar/


Discounted Euler Equation

Del Negro et al. (2012) and McKay et al. (2016) point out that forward guidance by

the commitment policy is extremely powerful in a liquidity trap in that it drastically

raises the inflation rate and the output gap. We introduce the discounted Euler equation

following McKay et al. (2016) as

xt = δEtxt+1 − ξχ (it − Etπt+1 − rnt ) .

The discounted Euler equation is different from the IS curve since discounting pa-

rameters δ and ξ are multiplied by the expected output gap and the real interest rate,

respectively. The effects of future real interest rates are discounted, and the forward

guidance should be less powerful. The first-order condition of equations (7) and (8) are

replaced by

−βγloss (Etπt+1 − γlossπt)+πt−γlossπt−1−β−1ξχφ1t−1−βγpcEtφ2t+1+(βγpc + 1)φ2t−φ2t−1 = 0,

λxxt + φ1t − δβ−1φ1t−1 − κφ2t = 0.

In simulation, we set δ = 0.97 and ξ = 0.75 following McKay et al. (2016) as shown in

Table 2. Figure 13 shows a simulation result with the discounted Euler equation.22 A

clear difference from Figure 9 is two quarters later termination in the zero interest rate

policy. The simulated output gap is closer to the data and it implies that the discounting

parameters δ and ξ make the IS curve better fit the data.

7 Concluding Remarks

Under optimal monetary policy in a liquidity trap, the zero interest rate policy continues

even after inflation rates are sufficiently accelerated over the 2 percent target. Eventually,

inflation rates surge and the policy rates continue to overshoot the long-run level to stop

22We assume −29.2 percent of the natural rate shock and −1.4 percent of cost-push shock at a time

zero as a quarterly base.
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high inflation rates after the exit from the zero interest rate policy. The Fed’s monetary

policy in the exit strategy from a liquidity trap shares these features.

Furthermore, about 70 percent of high inflation is explained by optimal monetary pol-

icy. However, the remaining 30 percent can be constrained by the Fed’s more aggressive

monetary policy tightening after the zero interest rate policy.
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Table 1: Parameter Values

Parameters Values Explanation

β 0.9913 Discount Factor

χ 6.25 Elasticity of Output Gap to Real Interest Rate

κ 0.0244 Elasticity of Inflation to Output Gap

α 0.66 Price Stickiness

λx 0.003 Weight for Output Gap

i∗ 0.875 Steady State Interest Rate (Quarterly)

σr 0.2445 Standard Deviation of Natural Rate Shock

ρr 0.8 Persistence of Natural Rate Shock

σµ 0.154 Standard Deviation of Cost-push Shock
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Table 2: Calibration for U.S.

Parameters Values Explanation

β 0.99 Discount Factor

χ 0.5 Elasticity of Output Gap to Real Interest Rate

κ 0.02 Elasticity of Inflation to Output Gap

λx 0.0026 Weight for Output Gap

i∗ 1.01 Steady State Interest Rate (Quarterly)

δ 0.97 Discount Factor to Output Gap

ξ 0.75 Discount Factor to Real Interest Rate
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Figure 1: Optimal response of the interest rate to the natural rate shocks for different

inflation inertia, where πt−1 = φ1t−1 = φ2t−1 = 0.
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Figure 2: Impulse responses to an annual −8 percent one-time natural rate shock with

a persistence 0.8.
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Figure 4: Tr denotes a time when the zero interest rate policy ends, Trn denotes a time

when the natural rate returns to zero, and Tp denotes a time when inflation hits its peak.

Panels (a-1) and (a-2) denote the cases of annual −8 and −12 percent one-time natural

rate shocks with persistence of 0.8. Panels (b-1) and (b-2) denote the cases of annual

−2 and −4 percent natural rate shocks for 10 and 4 quarters, respectively.
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Figure 5: Impulse responses to an annual −5 percent natural rate shock without persis-
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34



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-2

-1

0

1

2

T
r
 -

 T
r
n

(a) Natural rate

-4% r
n
 shock shock for 5 quarters

-5% r
n
 shock rate for 10 quarters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

T
r
 -

 T
p

(b) Inflation
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Figure 7: Impulse responses to an annual −8 percent one-time natural rate shock with
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Figure 8: For Tr, Trn, and Tp, see Figure 4. In Panels (a-1) and (a-2), solid lines with

circles and squares denote the cases of annual −8 and −12 percent one-time natural rate

shocks with persistence of 0.8 accompanied with annual −2 percent cost-push shocks

for 5 quarters, respectively, and dashed lines with triangles and diamonds denote the

cases of annual −8 and −12 percent one-time natural rate shocks with persistence of

0.8, respectively, when δ = 0.8. In Panels (b-1) and (b-2), dashed lines with circles and

squares denote the cases of annual −8 and −12 percent one-time natural rate shocks

with persistence of 0.8, respectively, when λi = 0.077.

37



-3
-2
-1
0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Core Core Consumer Price Index
Inflation_Simulation

Percent Change (Annual)

2 percent inflation target

2020Q2

Zero inflation

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Federal Funds Effective Rate

Nominal Interest Rate_Simulation

Percent (Annual)

4 percent

2020Q2

-8

-6

-4

-2

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GAP

GAP_Simulation

Percent

2020Q2

Zero output gap

Figure 9: Simulation for U.S. Monetary Policy
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Figure 10: Simulation for U.S. Monetary Policy: High Natural Rate
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Figure 11: Simulation for U.S. Monetary Policy: Low Natural Rate
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Figure 12: Simulation for U.S. Monetary Policy: Discounted Euler Equation
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Appendix

A Expression in Inflation Rate

We follow the idea of Giannoni and Woodford (2003) to construct equations. We assume

χ > 0, κ > 0, 0 < β < 1, and 0 < γ ≤ 1. The equation (12) becomes:23

βγ (1−Ψ1L) (1−Ψ2L) (1−Ψ3L) Etφ1t+1

= −κβγ (Etπt+1 − γπt) + κ (πt − γπt−1)− βλxγEt4xt+1 + λx4xt.

As shown in Giannoni and Woodford (2003), we need one root with 0 < Ψ1 < 1 and two

roots outside the unit circle to obtain a solution in the model. The two roots are either

two real roots 1 < Ψ2 ≤ Ψ3 or a complex pair Ψ2,Ψ3 of which real parts are greater than

one. For any γ, it is the case that

− (1−Ψ1L)

(
1− Ψ2 + Ψ3

2
L

)
φ1t

=
1

2
(βγΨ3)

−1 Et

[(
1−Ψ−13 L−1

)−1
Vt

]
+

1

2
(βγΨ2)

−1 Et

[(
1−Ψ−12 L−1

)−1
Vt

]
,

where

Vt ≡ −κβγ (Etπt+1 − γπt) + κ (πt − γπt−1)− βλxγEt4xt+1 + λx4xt.

By deconstructing these equations, we have

φ1t − ρ1φ1t−1 − ρ24φ1t−2 = −1

2
(βγΨ3)

−1mI
t −

1

2
(βγΨ2)

−1mII
t ,

where

ρ1 = Ψ1 +
Ψ2 + Ψ3

2
−Ψ1

Ψ2 + Ψ3

2
> 1,

ρ2 = Ψ1
Ψ2 + Ψ3

2
> 0,

mI
t = Et

[(
1−Ψ−13 L−1

)−1
Vt

]
= κ

∞∑
i=−1

αIπ,iEtπt+i + λx

∞∑
i=−1

αIx,iEtxt+i,

23Thus, βγ = (βΨ1Ψ2Ψ3)
−1

, βγ (Ψ1 + Ψ2 + Ψ3) = 1+γ+βγ, and βγΨ1 = 1+γ−βγ (Ψ2 + Ψ3 − 1).
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mII
t = Et

[(
1−Ψ−12 L−1

)−1
Vt

]
= κ

∞∑
i=−1

αIIπ,iEtπt+i + λx

∞∑
i=−1

αIIx,iEtxt+i,

αIπ,−1 = −γ,

αIπ,0 = 1 + βγ2 − γΨ−13 ,

αIπ,i = −γβΨ−i+1
3 + Ψ−i3

(
1 + βγ2

)
−Ψ−i−13 γ, i = 1, 2, 3, ...,

αIx,−1 = −1,

αIx,0 = 1 + βγ −Ψ−13 ,

αIx,i = −γβΨ−i+1
3 + Ψ−i3 (1 + βγ)−Ψ−i−13 , i = 1, 2, 3, ...,

αIIπ,−1 = −γ,

αIIπ,0 = 1 + βγ2 − γΨ−12 ,

αIIπ,i = −γβΨ−i+1
2 + Ψ−i2

(
1 + βγ2

)
−Ψ−i−12 γ, i = 1, 2, 3, ...,

αIIx,−1 = −1,

αIIx,0 = 1 + βγ −Ψ−12 ,

αIIx,i = −γβΨ−i+1
2 + Ψ−i2 (1 + βγ)−Ψ−i−12 , i = 1, 2, 3, ....

Finally, we rearrange these equations as:

φ1t − ρ1φ1t−1 − ρ24φ1t−2

= Et

∞∑
i=0

απ,iπt+i + Et

∞∑
i=0

αx,ixt+i + απ,−1πt−1 + αx,−1xt−1,

where

απ,−1 =
κ

β

Ψ−12 + Ψ−13

2
,

αx,−1 =
λx
βγ

Ψ−12 + Ψ−13

2
,

απ,i = − κ

2βγ

(
Ψ−13 αIπ,i + Ψ−12 αIIπ,i

)
,

αx,i = − λx
2βγ

(
Ψ−13 αIx,i + Ψ−12 αIIx,i

)
.
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In particular, for a large γ, coefficients of απ,i and αx,i are positives for small i such

as -1, 1, 2, and 3. For the parameters in Table 1, when γ = 0.1 and γ = 0.8, (απ,−1, απ,0,

απ,1, απ,2, απ,3) is (0.009, −0.087, −0.041, −0.027, −0.018) and (0.015, −0.023, 0.002,

0.002, 0.002), respectively. When γ = 0.1 and γ = 0.8, (αx,−1, αx,0, αx,1, αx,2, αx,3) is

(0.011, −0.006, −0.002, −0.001, −0.001) and (0.002, −0.003, 0.0001, 0.0002, 0.0002),

respectively.

B Numerical Algorithm

We solve the central bank’s optimization problem by calculating the solution for equa-

tions (1) to (3) and equations (7) to (11). Since the zero lower bound (ZLB) introduces

nonlinearity in the model, we employ a numerical technique which approximates expected

variables.

First of all, we specify the grids for four state variables, rnt , φ1t−1, φ2t−1, and πt−1. Let

S1, S2, S3, and S4 denote the vector of grids for rnt , φ1t−1, φ2t−1, and πt−1, respectively. A

tensor of these grid vectors, defined as S ≡ S1⊗S2⊗S3⊗S4, determines the combination

of all grids. The size of S is N = n1×n2×n3×n4 = 25000. As for S1, we put relatively

larger number of grids near the kink point stemming from the ZLB with the aim of

mitigating the expected approximation error. The p.d.f. for the natural interest rate is

discretized by Gaussian Quadrature.

Notice that we can rewrite the complementarity conditions regarding the ZLB, equa-

tions (9) to (11), as

min(max(χφ1t,−it),∞) = 0. (13)

In order to employ an algorithmic solution that is designed basically for differentiable

functions, we approximate equation (13) by a semismooth function, so called Fischer’s

equation:

ψ−(ψ+(χφ1t,−it),∞) = 0,

where ψ±(u, v) = u+ v ±
√
u2 + v2 (c.f., Miranda and Fackler (2004)).
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Let ht ≡ (xt, πt, φ2t) denote the vector of forward-looking variables at time t. We

need to obtain ht, it, and φ1t by solving the central bank’s optimization problem, taking

state variables as given. In order to calculate the expectations terms, we approximate

the time-invariant function for forward-looking variables, h, by a collocation method.

Our solution procedure is summarized as follows:

1. Given a particular set of grids for state variables, denoted by Sj, and the initial

guess of the functional form for h(Sj), denoted by h0(Sj), compute h1(Sj), it, and

φ1,t as a solution for equations (1) to (3) and equations (7) to (11). A cubic-spline

function is used to interpolate h(Sj).

2. Repeat step 1 for all j = 1, . . . N .

3. Stop if ‖h1 − h0‖∞/‖h0‖∞ < 1.5× 10−6. Otherwise, update the initial functional

form as h0 ≡ h1 and go to step 1.

Impulse responses are derived using Matlab routine fsolve with the obtained policy func-

tion as a given. Euler residuals from first order conditions are order of 10−3, which is

concentrated mostly around the zero lower bound. Computation time is 8 hours for each

γ. The software is Matlab, CPU is Core i7 with 2.90GHz, and Memory is 16GB.
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